科目: 來源: 題型:
【題目】某商場以每件42元的價格購進一種服裝,由試銷知,每天的銷量t與每件的銷售價x(元)之間的函數(shù)關(guān)系為t=204-3x。
(1)試寫出每天銷售這種服裝的毛利潤y(元)與每件銷售價x(元)之間的函數(shù)表達式(毛利潤=銷售價-進貨價); 并求出自變量的取值范圍。
(2)每件銷售價為多少元,才能使每天的毛利潤最大?最大毛利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標(biāo)為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從A出發(fā)沿AB以3cm/s的速度向點B移動,一直到達點B為止;同時,點Q從點C出發(fā)沿以2cm/s的速度向點D移動.經(jīng)過多長時間P、Q兩點的距離是10?
查看答案和解析>>
科目: 來源: 題型:
【題目】某籃球隊在一次聯(lián)賽中共進行了10場比賽,已知這10場比賽的平均得分為48分,且前9場比賽的得分依次為:57,51,45,51,44,46,45,42,48.
(1)求第10場比賽的得分;
(2)直接寫出這10場比賽的中位數(shù),眾數(shù)和方差.
方差公式:s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]
查看答案和解析>>
科目: 來源: 題型:
【題目】有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.
(1)求甲選擇A部電影的概率;
(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】我們發(fā)現(xiàn):若AD是△ABC的中線,則有AB2+AC2=2(AD2+BD2),請利用結(jié)論解決問題:如圖,在矩形ABCD中,已知AB=20,AD=12,E是DC中點,點P在以AB為直徑的半圓上運動,則CP2+EP2的最小值是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,直線l:與x軸交于點,與y軸交于點B,點C是線段OA上一動點以點A為圓心,AC長為半徑作交x軸于另一點D,交線段AB于點E,連結(jié)OE并延長交于點F.
求直線l的函數(shù)表達式和的值;
如圖2,連結(jié)CE,當(dāng)時,
求證:∽;
求點E的坐標(biāo);
當(dāng)點C在線段OA上運動時,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=x+c與x軸交于點A(﹣4,0),與y軸交于點C,拋物線y=﹣x2+bx+c經(jīng)過點A,C.
(1)求拋物線的解析式;
(2)已知點P是拋物線上的一個動點,并且點P在第二象限內(nèi),過動點P作PE⊥x軸于點E,交線段AC于點D.
①如圖1,過D作DF⊥y軸于點F,交拋物線于M,N兩點(點M位于點N的左側(cè)),連接EF,當(dāng)線段EF的長度最短時,求點P,M,N的坐標(biāo);
②如圖2,連接CD,若以C,P,D為頂點的三角形與△ADE相似,求△CPD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E.
(1)判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若BE=4,DE=8,求AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】小麗老師家有一片80棵桃樹的桃園,現(xiàn)準(zhǔn)備多種一些桃樹提高桃園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低.若該桃園每棵桃樹產(chǎn)桃(千克)與增種桃樹(棵)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種桃樹多少棵時,桃園的總產(chǎn)量可以達到6750千克?
(3)如果增種的桃樹 (棵)滿足: ,請你幫小麗老師家計算一下,桃園的總產(chǎn)量最少是多少千克,最多又是多少千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com