相關習題
 0  360327  360335  360341  360345  360351  360353  360357  360363  360365  360371  360377  360381  360383  360387  360393  360395  360401  360405  360407  360411  360413  360417  360419  360421  360422  360423  360425  360426  360427  360429  360431  360435  360437  360441  360443  360447  360453  360455  360461  360465  360467  360471  360477  360483  360485  360491  360495  360497  360503  360507  360513  360521  366461 

科目: 來源: 題型:

【題目】如圖直角坐標系中,已知A-8,0,B0,6,點M在線段AB上.

1如圖1,如果點M是線段AB的中點,且M的半徑為4,試判斷直線OB與M的位置關系,并說明理由;

2如圖2,M與x軸、y軸都相切,切點分別是點E、F,試求出點M的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ABO的直徑,CEABE,弦ADCE延長線于點F,CFAF

1)求證:;

2)若BC=8tanDAC=,求O的半徑.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB為⊙O的直徑,弦AC=2,ABC=30°,ACB的平分線交⊙O于點D,求:

(1)BC、AD的長;

(2)圖中兩陰影部分面積的和.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,E的中點,AEBC交于點F,C=2EAB.

(1)求證:AC是⊙O的切線;

(2)已知CD=4,CA=6,

①求CB的長;

②求DF的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點E是△ABC的內心,AE的延長線和△ABC的外接圓相交于點D.AD與BC相交于點F,連結BE,DC,已知EF=2,CD=5,則AD=______________.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線l1l2,Ol1l2分別相切于點A和點B.點M和點N分別是l1l2上的動點,MN沿l1l2平移.⊙O的半徑為1,1=60°.有下列結論:①MN=;②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1l2的距離為2,其中正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,拋物線y=ax2+2ax+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)當a>0時,如圖所示,若點D是第三象限方拋物線上的動點,設點D的橫坐標為m,三角形ADC的面積為S,求出S與m的函數(shù)關系式,并直接寫出自變量m的取值范圍;請問當m為何值時,S有最大值?最大值是多少.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx-8x軸交于A,B兩點,與y軸交于點C,直線l經過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(-2,0),(6,-8).

(1)求拋物線的函數(shù)表達式,并分別求出點B和點E的坐標;

(2)若點Py軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q,試探究:當m為何值時,△OPQ是等腰三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調查與預測,種植樹木的利潤y與投資量x成正比例關系,如圖1所示:種植花卉的利潤y與投資量x成二次函數(shù)關系,如圖2所示(注:利潤與投資量的單位:萬元)

(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?

(3)在(2)的基礎上要保證獲利在22萬元以上,該園林專業(yè)戶應怎樣投資?

查看答案和解析>>

同步練習冊答案