科目: 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于C點,連接AC,A(3,0),AC=3.
(1)求拋物線的函數(shù)解析式,并直接寫出頂點坐標(biāo);
(2)點P是第四象限內(nèi)拋物線上一點,過點P作PQ⊥AC于Q,直接寫出當(dāng)線段PQ長度最大時,點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負(fù)半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一隧道的橫截面是由一段拋物線及矩形的三邊圍成的,隧道寬BC=10米,矩形部分高AB=3米,拋物線型的最高點E離地面OE=6米,按如圖建立一個以BC為x軸,OE為y軸的直角坐標(biāo)系.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)有雙車道,現(xiàn)有一輛貨運卡車高4.5米,寬3米,這輛貨運卡車能順利通過隧道嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.
(1)求拋物線的解析式;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=x2﹣2ax+b的頂點在x軸上,P(x1,m),Q(x2,m)(x1<x2)是此拋物線上的兩點.
(1)若a=1.
①當(dāng)m=b時,求x1,x2的值;
②將拋物線沿y軸平移,使得它與x軸的兩個交點間的距離為4,試描述出這一變化過程;
(2)若存在實數(shù)c,使得x1≤c﹣1,且x2≥c+7成立,則m的取值范圍是_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商家銷售一款商品,進(jìn)價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費5元,未來一個月按30天計算,這款商品將開展“每天降價1元”的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設(shè)第x天且x為整數(shù)的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于A(6,0),B(0,3)兩點.點C為線段AB上的一個動點,過點C作CD⊥x軸于點D,作CE⊥y軸與點E,求矩形OECD的最大面積,并求此時點C的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有兩個相等的實數(shù)根.
(1)求m的值;
(2)將y=﹣x2+(m+1)x﹣(m2+1)的圖象向左平移3個單位長度,再向上平移2個單位長度,寫出變化后函數(shù)的表達(dá)式;
(3)在(2)的條件下,當(dāng)直線y=2x+n與變化后的圖象有公共點時,求n2﹣4n的最小值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中有一梯形ABCO,頂點C在x正半軸上,A、B兩點在第一象限;且AB∥CO,AO=BC=2,AB=3,OC=5.點P在x軸上,從點(﹣2,0)出發(fā),以每秒1個單位長度的速度沿x軸向正方向運動;同時,過點P作直線l,使直線l和x軸向正方向夾角為30°.設(shè)點P運動了t秒,直線l掃過梯形ABCO的面積為S掃.
(1)求A、B兩點的坐標(biāo);
(2)當(dāng)t=2秒時,求S掃的值;
(3)求S掃與t的函數(shù)關(guān)系式,并求出直線l掃過梯形ABCO面積的時點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價為15元/千克,如果售價為20元/千克,那么每天可售出250千克,如果售價為25元/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價x(元/千克)之間 存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若該超市每天要獲得利潤810元,同時又要讓消費者得到實惠,則售價x應(yīng)定于多少元?
(3)若櫻桃的售價不得高于28元/千克,請問售價定為多少時,該超市每天銷售櫻桃所獲的利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com