科目: 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=2,將一塊三角板的直角頂點放在斜邊AB的中點P處,將此三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB與點D、點E,圖①,②,③是旋轉得到的三種圖形。
(1)觀察線段PD和PE之間的有怎樣的大小關系,并以圖②為例,加以說明;
(2)△PBE是否構成等腰三角形?若能,指出所有的情況(即求出△PBE為等腰三角形時CE的長,直接寫出結果);若不能請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C,E為O上的兩點,若AC平分∠EAB,CD⊥AE于點D.
(1)求證:DC是⊙O切線;
(2)若AO=6,DC=3,求DE的長;
(3)過點C作CF⊥AB于F,如圖2,若AD﹣OA=1.5,AC=3,求圖中陰影部分面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優(yōu)弧于點P,Q,且點P, Q在AB異側,連接OP.
(1)求證:AP=BQ;
(2)當BQ=4時,求扇形COQ的面積及的長(結果保留π);
(3)若△APO的外心在扇形COD的內部,請直接寫出OC的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為半圓O的直徑,點C為半圓上任一點.
(1)若∠BAC=30°,過點C作半圓O的切線交直線AB于點P.求證:△PBC≌△AOC;
(2)若AB=6,過點C作AB的平行線交半圓O于點D.當以點A,O,C,D為頂點的四邊形為菱形時,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經過A、D兩點,交AC于點E,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結果保留π和根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以點D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN.
(1)求證:MN=BM+NC;
(2)求△AMN的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點E在直角△ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相交于點D,AD平分∠BAC.
(1)求證,BC是⊙O的切線.
(2)若BE=2,BD=4,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊△ABC的邊長為12, D為AB邊上一動點,過點D作DE⊥BC于點E.過點E作EF⊥AC于點F.
(1)若AD=2,求AF的長;
(2)當AD取何值時,DE=EF?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OE∥BD,連接BE,DE,BD,設BE交AC于點F,若∠DEB=∠DBC.
(1)求證:BC是⊙O的切線;
(2)若BF=BC=2,求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB=80°
(1)若點C在優(yōu)弧BD上,求∠ACD的大;
(2)若點C在劣弧BD上,直接寫出∠ACD的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com