科目: 來源: 題型:
【題目】填空:
(1)已知,△ABC中,∠C+∠A=4∠B,∠C﹣∠A=40°,則∠A= 度;∠B= 度;∠C= 度;
(2)一個多邊形的內(nèi)角和與外角和之和為2160°,則這個多邊形是 邊形;
(3)在如圖的平面直角坐標(biāo)系中,點A(﹣2,4),B(4,2),在x軸上取一點P,使點P到點A和點B的距離之和最。畡t點P的坐標(biāo)是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC為12米,并測出此時太陽光線與地面成30°夾角.
(1)求出樹高AB;
(2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC的中點,連接AD,E在BC的延長線上,連接AE,∠E=2∠CAD,下列結(jié)論:
①AD⊥BC;
②∠E=∠BAC;
③CE=2CD;
④AE=BE.
其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】有七張正面分別標(biāo)有數(shù)字﹣1、﹣2、0、1、2、3、4的卡片,除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數(shù)字為m,則使關(guān)于x的方程 + =2的解為正數(shù),且不等式組 無解的概率是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(2,3),點B(﹣2,1).
(1)請運用所學(xué)數(shù)學(xué)知識構(gòu)造圖形求出AB的長;
(2)若Rt△ABC中,點C在坐標(biāo)軸上,請在備用圖1中畫出圖形,找出所有的點C后不用計算寫出你能寫出的點C的坐標(biāo);
(3)在x軸上是否存在點P,使PA=PB且PA+PB最小?若存在,就求出點P的坐標(biāo);若不存在,請簡要說明理由(在備用圖2中畫出示意圖).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③,④OD:OC=DE:EC,⑤,正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,現(xiàn)以D為頂點作一個60°角,使角兩邊分別交AB,AC邊所在直線于M,N兩點,連接MN,探究線段BM、MN、NC之間的關(guān)系,并加以證明.
(1)如圖1,若∠MDN的兩邊分別交AB,AC邊于M,N兩點.猜想:BM+NC=MN.延長AC到點E,使CE=BM,連接DE,再證明兩次三角形全等可證.請你按照該思路寫出完整的證明過程;
(2)如圖2,若點M、N分別是AB、CA的延長線上的一點,其它條件不變,再探究線段BM,MN,NC之間的關(guān)系,請直接寫出你的猜想(不用證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com