科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC 是等腰直角三角形,∠ABC=90°,AB平行x 軸,點C在 x 軸上,若點A,B分別在正比例函數(shù) y=6x 和 y=kx 的圖象上,則 k=__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有甲,乙兩個工程隊分別同時開挖兩條 600 m 長的隧道,所挖遂道長度 y(m)與挖掘時間x(天)之間的函數(shù)關系如圖所示.則下列說法中,錯誤的是( )
A.甲隊每天挖 100 m
B.乙隊開挖兩天后,每天挖50米
C.甲隊比乙隊提前2天完成任務
D.當時,甲、乙兩隊所挖管道長度相同
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關系并證明;
(2)求FG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市計劃購進甲、乙兩種商品,甲種商品的進價比乙種商品的進價每件多80元,若用720元購進甲種商品的件數(shù)與用360元購進乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進價各是多少元?
(2)已知甲種商品的售價為240元/件,乙種商品的售價為130元/件,若超市銷售甲、乙兩種商品共80件,其中銷售甲種商品為件(),設銷售完80件甲、乙兩種商品的總利潤為元,求與之間的函數(shù)關系式,并求出的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】爭創(chuàng)全國文明城市,從我做起,某學校在七年級開設了文明禮儀校本課程,為了解學生的學習情況,學校隨機抽取30名學生進行測試,成績?nèi)缦?/span>(單位:分):78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93,整理上面的數(shù)據(jù)得到頻數(shù)分布表和頻數(shù)分布直方圖:
成績(分) | 頻數(shù) |
5 | |
11 | |
2 |
回答下列問題:
(1)以上30個數(shù)據(jù)中,中位數(shù)是_____;頻數(shù)分布表中____;_____;
(2)補全頻數(shù)分布直方圖;
(3)若成績不低于86分為優(yōu)秀,估計該校七年級300名學生中,達到優(yōu)秀等級的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC,BD相交于點O,AC=6,BD=8,∠AOD=65°,點E在BO上,AF∥CE交BD于點F.
(1)求證:四邊形AFCE是平行四邊形.
(2)當點E在邊BO上移動時,平行四邊形AFCE能否為矩形?若能,此時BE的長為多少(直接寫出結(jié)果)?若不能,請說明理由.
(3)當點E在邊BO上移動時,平行四邊形AFCE能否為菱形?若能,此時BE的長為多少(直接寫出結(jié)果)?若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,E是AC邊上的一點,且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙O交AC于點D,交BE于點F.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點D,BD的延長線交AC于點E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓, =,點D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線.
(2)若CD=2,OP=1,求線段BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com