科目: 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是菱形,其中B點坐標(biāo)是(8,2),D點坐標(biāo)是(0,2),點A在x軸上,則菱形ABCD的周長是( )
A.2
B.8
C.8
D.12
查看答案和解析>>
科目: 來源: 題型:
【題目】我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點稱為斜坐標(biāo)系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標(biāo)軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應(yīng)的數(shù)分別叫做P點的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(x,y)稱為點P的斜坐標(biāo),記為P(x,y).
(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.
①點A、B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A ,B ,C .
②設(shè)點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關(guān)系為 .
③設(shè)點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關(guān)系為 .
(2)若ω=120°,O為坐標(biāo)原點.
①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4 ,求圓M的半徑及圓心M的斜坐標(biāo).
②如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】問題情景:如圖1,在同一平面內(nèi),點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側(cè),若點在內(nèi)部,試問,與的大小是否滿足某種確定的數(shù)量關(guān)系?
(1)特殊探究:若,則_________度,________度,_________度;
(2)類比探索:請猜想與的關(guān)系,并說明理由;
(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】中國移動某套餐推出了如下兩種流量計費方式:
月租費/元 | 流量費(元/) | |
方式一 | 8 | 1 |
方式二 | 28 | 0.5 |
(1)設(shè)一個月內(nèi)用移動電話使用流量為,方式一總費用元,方式二總費用元(總費用不計通話費及其它服務(wù)費).寫出和關(guān)于的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)如圖為在同一平面直角坐標(biāo)系中畫出(1)中的兩個函數(shù)圖象的示意圖,記它們的交點為點,求點的坐標(biāo),并解釋點坐標(biāo)的實際意義;
(3)根據(jù)(2)中函數(shù)圖象,結(jié)合每月使用的流量情況,請直接寫出選擇哪種計費方式更合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】鄭州市自2019年12月1日起推行垃圾分類,廣大市民對垃圾桶的需求劇增.為滿足市場需求,某超市花了7900元購進(jìn)大小不同的兩種垃圾桶共800個,其中,大桶和小桶的進(jìn)價及售價如表所示.
大桶 | 小桶 | |
進(jìn)價(元/個) | 18 | 5 |
售價(元/個) | 20 | 8 |
(1)該超市購進(jìn)大桶和小桶各多少個?
(2)當(dāng)小桶售出了300個后,商家決定將剩下的小桶的售價降低1元銷售,并把其中一定數(shù)量的小桶作為贈品,在顧客購買大桶時,買一贈一(買一個大桶送一個小桶),送完即止.
請問:超市要使這批垃圾桶售完后獲得的利潤為1550元,那么小桶作為贈品送出多少個?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二元一次方程,通過列舉將方程的解寫成下列表格的形式:
-1 | 5 | 6 | |||
6 | 5 | 0 |
如果將二元一次方程的解所包含的未知數(shù)的值對應(yīng)直角坐標(biāo)系中一個點的橫坐標(biāo),未知數(shù)的值對應(yīng)這個點的縱坐標(biāo),這樣每一個二元一次方程的解,就可以對應(yīng)直角坐標(biāo)系中的一個點,例如:方程的解的對應(yīng)點是.
(1)表格中的________,___________;
(2)通過以上確定對應(yīng)點坐標(biāo)的方法,將表格中給出的五個解依次轉(zhuǎn)化為對應(yīng)點的坐標(biāo),并在所給的直角坐標(biāo)系中畫出這五個點;根據(jù)這些點猜想方程的解的對應(yīng)點所組成的圖形是_________,并寫出它的兩個特征①__________,②_____________;
(3)若點好落在的解對應(yīng)的點組成的圖形上,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校興趣小組在創(chuàng)客嘉年華活動中組織了計算機編程比賽,八年級每班派25名學(xué)生參加,成績分別為、、、四個等級.其中相應(yīng)等級的得分依次記為10分、9分、8分、7分.將八年級的一班和二班的成績整理并繪制成如下統(tǒng)計圖表:
班級 | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 |
一班 | 8.76 | 9 | 9 | |
二班 | 8.76 | 8 | 10 |
請根據(jù)本學(xué)期所學(xué)過的《數(shù)據(jù)的分析》相關(guān)知識分析上述數(shù)據(jù),幫助計算機編程老師選擇一個班級參加校級比賽,并闡述你選擇的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內(nèi)一點C,當(dāng)△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.
(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;
(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標(biāo);
(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.
(1)求點A、B的坐標(biāo);
(2)若BN=MN,且S△MBC=,求a的值;
(3)若∠BMC=2∠ABM,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形在平面直角坐標(biāo)系內(nèi),其中點,點,點和點分別位于線段,上,將沿對折,恰好能使點與點重合.若軸上有一點,能使為等腰三角形,則點的坐標(biāo)為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com