科目: 來源: 題型:
【題目】如圖,由一段斜坡AB的高AD長為0.6米,∠ABD=30°,為了達(dá)到無障礙通道的坡道標(biāo)準(zhǔn),現(xiàn)準(zhǔn)備把斜坡改長,使∠ACD=5.71°.
(1)求斜坡AB的長;
(2)求斜坡新起點(diǎn)C與原起點(diǎn)B的距離.(精確到0.01米)(參考數(shù)據(jù):≈1.732,tan5.71°≈0.100)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長為20,求△ABC的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿對角線折疊,設(shè)重疊部分為△EBD,那么下列說法:①是等腰三角形,;②折疊后和一定相等;③折疊后得到的圖形是軸對稱圖形;④和一定是全等三角形.正確的是______(填序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等邊△ABC的邊長為4cm,點(diǎn)P,Q分別是直線AB,BC上的動點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P從頂點(diǎn)A沿AB向B點(diǎn)運(yùn)動,點(diǎn)Q同時(shí)從頂點(diǎn)B沿BC向C點(diǎn)運(yùn)動,它們的速度都為lcm/s,到達(dá)終點(diǎn)時(shí)停止運(yùn)動.設(shè)它們的運(yùn)動時(shí)間為t秒,連接AQ,PQ.
①當(dāng)t=2時(shí),求∠AQP的度數(shù).
②當(dāng)t為何值時(shí)△PBQ是直角三角形?
(2)如圖2,當(dāng)點(diǎn)P在BA的延長線上,Q在BC上,若PQ=PC,請判斷AP,CQ和AC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中C所對圓心角的度數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:
時(shí)間(分鐘) | 里程數(shù)(公里) | 車費(fèi)(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】高速鐵路列車(簡稱:高鐵)是人們出行的重要交通工具:已知高鐵平均速度是普通鐵路列車(簡稱:普客)平均速度的的3倍.同樣行駛690km,高鐵比普客少用4.6h.
(1)求高鐵的平均速度.
(2)某天王老師乘坐8:40出發(fā)的高鐵,到里程1050km的A市參加當(dāng)天14:00召開的會議.若他從A市高鐵站到會議地點(diǎn)最多還需要1.5h,試問在高鐵準(zhǔn)點(diǎn)到達(dá)的情況下,他能在開會之前趕到會議地點(diǎn)嗎?
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=AC,AM是△ABC的外角∠CAE的平分線.
(1)如圖1,求證:AM∥BC;
(2)如圖2,若D是BC中點(diǎn),DN平分∠ADC交AM于點(diǎn)N,DQ平分∠ADB交AM的反向延長線于Q,判斷△QDN的形狀并說明理由.
(3)如圖3,在(2)的條件下,若∠BAC=90°將∠QDN繞點(diǎn)D旋轉(zhuǎn)一定角度,DN交邊AC于F,DQ交邊AB于H,當(dāng)S△ABC=14時(shí),則四邊形AHDF的面積為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn).
(1)求這個二次函數(shù)以及直線BC的解析式;
(2)直接寫出點(diǎn)A的坐標(biāo);
(3)當(dāng)x為何值時(shí),一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com