科目: 來源: 題型:
【題目】為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學生立定跳遠測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內;
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學生,估計該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為點D,E.(1)求證:△ACD≌△CBE;(2)若BE=5,AD=12,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知等邊三角形ABC,點D為線段BC上一點,以線段DB為邊向右側作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,則∠DBE的度數(shù)是( 。
A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:
①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.
其中正確的是_____.(把你認為正確結論的序號都填上)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線l1與l2相交,且夾角為45°,點P在角的內部,小明用下面的方法作點P的對稱點:先以l1為對稱軸作點P關于l1的對稱點P1,再以l2為對稱軸作點P1關于l2的對稱點P2,然后再以l1為對稱軸作點P2關于l1的對稱點P3,以l2為對稱軸作點P3關于l2的對稱點P4,...,如此繼續(xù),得到一系列的點P1,P2,...,Pn,若點Pn與點P重合,則n的值可以是( 。
A.2019B.2018C.2017D.2016
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內,且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(保持點P在△ABC內部),連接AP、BP、BQ.
(1)如圖1求證:AP=BQ;
(2)如圖2當三角板CPQ繞點C旋轉到點A、P、Q在同一直線時,求AP的長;
(3)設射線AP與射線BQ相交于點E,連接EC,寫出旋轉過程中EP、EQ、EC之間的數(shù)量關系.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為( )
A. 2π B. 3π C. 4π D. 5π
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com