科目: 來源: 題型:
【題目】已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=x2+bx+c經(jīng)過點A,B.
(1)求拋物線解析式;
(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;
(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①、②、③、○n、…、M、N分別是⊙O的內接正三角形ABC、正方形ABCD、正五邊形ABCDE、…、正n邊形ABCDE…的邊AB、BC上的點,且BM=CN,連接OM、ON.
(1)求圖①中∠MON的度數(shù);
(2)圖②中∠MON的度數(shù)是_________,圖③中∠MON的度數(shù)是___________;
(3)試探究∠MON的度數(shù)與正n邊形邊數(shù)n的關系(直接寫出答案).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一個圓O和兩個正六邊形T1,T2. T1的6個頂點都在圓周上,T2的6條邊都和圓O相切(我們稱T1,T2分別為圓O的內接正六邊形和外切正六邊形).
(1)設T1,T2的邊長分別為a,b,圓O的半徑為r,求r:a及r:b的值;
(2)求正六邊形T1,T2的面積比S1:S2的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,把一塊含的直角三角板的邊放置于長方形直尺的邊上.
(1)填空:______,_______;
(2)最短直角邊與的夾角.
①現(xiàn)把三角板如圖2擺放,且點恰好落在邊上時,求、的度數(shù)(寫出求解過程,結果用含的代數(shù)式表示);
②現(xiàn)把圖1中的三角板繞點逆時針轉動,當時,存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直.例如:當時,,;直接寫出其他所有的值和對應的那兩條垂線.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,如果BD,CE分別是∠ABC,∠ACB的平分線且他們相交于點P,設∠A=n°.
(1)求∠BPC的度數(shù)(用含n的代數(shù)式表示),寫出推理過程.
(2)當∠BPC=125°時,∠A= .
(3)當n=60°時,EB=7,BC=12,DC的長為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】下面給出六個命題:①各角相等的圓內接多邊形是正多邊形;②各邊相等的圓內接多邊形是正多邊形;③正多邊形是中心對稱圖形;④各角均為的六邊形是正六邊形;⑤邊數(shù)相同的正邊形的面積之比等于它們邊長的平方比;⑥各邊相等的圓外切多邊形是正多邊形.其中,正確的命題是_____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】興趣小組的同學要測量樹的高度.在陽光下,一名同學測得一根長為1米的竹竿的影長為0.4米,同時另一名同學測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學樓的第一級臺階上,測得此影長為0.2米,一級臺階高為0.3米,如圖所示,若此時落在地面上的影長為4.4米,求樹的高度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CD是經(jīng)過∠BCA頂點C的一條直線,且直線CD經(jīng)過∠BCA的內部,點E,F在射線CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如圖1,若∠BCA=80°,∠α=90°,問EF=BE-AF,成立嗎?說明理由.
(2)將(1)中的已知條件改成∠BCA=∠β,∠α+∠β=180°(如圖2),問EF=BE-AF仍成立嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com