科目: 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,△ABC中,∠ACB=90°,AC=BC=6,M點在邊AC上,且CM=2,過M點作AC的垂線交AB邊于E點,動點P從點A出發(fā)沿AC邊向M點運動,速度為1個單位/秒,當動點P到達M點時,運動停止.連接EP、EC,設運動時間為t.在此過程中:
(1)當t=1時,求EP的長度;
(2)當t為何值時,△EPC是等腰三角形?
(3)如圖2,若點N是線段ME上一點,且MN=3,點Q是線段AE上一動點,連接PQ、PN、NQ得到△PQN,請直接寫出△PQN周長的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知□ABCD,延長AB到E使BE=AB,連接BD,ED,EC,若ED=AD.
(1)求證:四邊形BECD是矩形;
(2)連接AC,若AD=4,CD= 2,求AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】郴州市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:在Rt△ABC中,∠ACB=90°,AB=6,過點C的直線MN∥AB,D為AB上一點,過點D作DE⊥BC,交直線MN于點E,垂足為F,連結CD,BE,
(1)當點D是AB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由
(2)在(1)的條件下,當∠A= 時四邊形BECD是正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,△ABC中,AB=AC,D是BC上一點,點E、F分別在AB、AC上,BD=CF,CD=BE,G為EF的中點.
求證:(1)△BDE≌△CFD(2)DG⊥EF.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AC邊的垂直平分線DM交AC于D,BC邊的垂直平分線EN交BC于E,DM與EN相交于點F.
(1)若△CMN的周長為20cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數.
查看答案和解析>>
科目: 來源: 題型:
【題目】(問題情境)
課外興趣小組活動時,老師提出了如下問題:如圖1,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.請根據小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關系”可求得AD的取值范圍是 .
解后反思:題目中出現“中點”“中線”等條件,可考慮延長中線構造全等三角形,把分散的已知條件和所求證的結論集合到同一個三角形中.
(初步運用)
如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
(靈活運用)
如圖3,在△ABC中,∠A=90°,D為BC中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF,試猜想線段BE、CF、EF三者之間的等量關系,并證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com