科目: 來源: 題型:
【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點(diǎn)都在網(wǎng)格線交點(diǎn)處的三角形, 是一個格點(diǎn)三角形.
在圖中,請判斷與是否相似,并說明理由;
在圖中,以O為位似中心,再畫一個格點(diǎn)三角形,使它與的位似比為2:1
在圖中,請畫出所有滿足條件的格點(diǎn)三角形,它與相似,且有一條公共邊和一個公共角.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于對位似圖形的4個表述中:
相似圖形一定是位似圖形,位似圖形一定是相似圖形;
位似圖形一定有位似中心;
如果兩個圖形是相似圖形,且每組對應(yīng)點(diǎn)的連線所在的直線都經(jīng)過同一個點(diǎn),那么,這兩個圖形是位似圖形;
位似圖形上任意兩點(diǎn)與位似中心的距離之比等于位似比.
正確的個數(shù)
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一.為了倡導(dǎo)“節(jié)約用水從我們做起”,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中的一年的月均用水量(單位:t),其用水量分別為6、7、6.5、6.5、7.5、7.5、6.5、6、8、6.5.求這10個數(shù)據(jù)的平均數(shù).眾數(shù).中位數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點(diǎn),DE⊥AB, DF⊥AC,垂足分別是E,F(xiàn).
(1)證明:DE=DF;
(2)只添加一個條件,使四邊形EDFA是正方形.并證明結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:k為正數(shù),直線l1:y=kx+k-1與直線l2:y=(k+1)x+k及x軸圍成的三角形的面積為Sk,則S1+S2+S3+....+S2016的值為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖1,BD是邊長為1的正方形ABCD的對角線,BE平分∠DBC交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長線于點(diǎn)G.
(1)求證:△BCE≌△DCF;
(2)求CF的長;
(3)如圖2,在AB上取一點(diǎn)H,且BH=CF,若以BC為x軸,AB為y軸建立直角坐標(biāo)系,問在直線BD上是否存在點(diǎn)P,使得以B、H、P為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出所有符合條件的P點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,P點(diǎn)坐標(biāo)為(2,2),l1⊥l2,l1.l2分別交x軸和y軸于A點(diǎn)和B點(diǎn),則四邊形OAPB的面積為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,△ABC,△BDF為等腰直角三角形,AB⊥CD,點(diǎn)F在線段AB上,延長CF交AD于點(diǎn)E.
(1)求證:CF=AD.
(2)求證:CE⊥AD.
查看答案和解析>>
科目: 來源: 題型:
【題目】有一段6000米的道路由甲、乙兩個工程隊(duì)負(fù)責(zé)完成,已知甲工程隊(duì)每天完成的工作量是乙工程隊(duì)每天完成工作量的2倍,且甲工程隊(duì)單獨(dú)完成此項(xiàng)工程比乙工程隊(duì)單獨(dú)完成此項(xiàng)工程少用10天.
(1)求甲、乙兩工程隊(duì)每天各完成多少米?
(2)如果甲工程隊(duì)每天需工程費(fèi)700元,乙工程隊(duì)每天需工程費(fèi)500元,甲工程隊(duì)單獨(dú)施工4天后由甲乙兩個工程隊(duì)共同完成余下的工程,則完成此項(xiàng)工程共需要多少費(fèi)用?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com