相關習題
 0  217357  217365  217371  217375  217381  217383  217387  217393  217395  217401  217407  217411  217413  217417  217423  217425  217431  217435  217437  217441  217443  217447  217449  217451  217452  217453  217455  217456  217457  217459  217461  217465  217467  217471  217473  217477  217483  217485  217491  217495  217497  217501  217507  217513  217515  217521  217525  217527  217533  217537  217543  217551  366461 

科目: 來源: 題型:解答題

已知拋物線過點A(1,0),頂點為B,且拋物線不經過第三象限。
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線經過點B,且于該拋物線交于另一點C(),求當x≥1時y1的取值范圍。

查看答案和解析>>

科目: 來源: 題型:解答題

我們知道,經過原點的拋物線解析式可以是。
(1)對于這樣的拋物線:
當頂點坐標為(1,1)時,a=       ;
當頂點坐標為(m,m),m≠0時,a 與m之間的關系式是       ;
(2)繼續(xù)探究,如果b≠0,且過原點的拋物線頂點在直線上,請用含k的代數式表示b;
(3)現(xiàn)有一組過原點的拋物線,頂點A1,A2,…,An在直線上,橫坐標依次為1,2,…,n(n為正整數,且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1,B2,B3,…,Bn,以線段AnBn為邊向右作正方形AnBnCnDn,若這組拋物線中有一條經過點Dn,求所有滿足條件的正方形邊長。

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在平面直角坐標系中,二次函數的圖象與 軸交于A(,0),B(2,0),且與軸交于點C.


(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)點P是x軸下方的拋物線上一動點, 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點P的坐標;
(3) 在此拋物線上是否存在點Q,使得以A,C,B,Q四點為頂點的四邊形是直角梯形?若存在, 求出Q點的坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在平面直角坐標系中,二次函數y=ax2+6x+c的圖象經過點A(4,0)、B(﹣1,0),與y軸交于點C,點D在線段OC上,OD=t,點E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足為F.

(1)求這個二次函數的解析式;
(2)求線段EF、OF的長(用含t的代數式表示);
(3)當△ECA為直角三角形時,求t的值.

查看答案和解析>>

科目: 來源: 題型:解答題

已知二次函數 (a、m為常數,且a¹0)。
(1)求證:不論a與m為何值,該函數的圖像與x軸總有兩個公共點;
(2)設該函數的圖像的頂點為C,與x軸交于A、B兩點,與y軸交于點D。
①當△ABC的面積等于1時,求a的值:
②當△ABC的面積與△ABD的面積相等時,求m的值。

查看答案和解析>>

科目: 來源: 題型:解答題

如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=900,且EF交正方形外角的平分線CF于點F.

(1)圖1中若點E是邊BC的中點,我們可以構造兩個三角形全等來證明AE=EF,請敘述你的一個構造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當點E滑動到某處時,點F恰好落在拋物線上,求此時點F的坐標.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,拋物線與直線交于C,D兩點,其中點C在y軸上,點D的坐標為。點P是y軸右側的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.

(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O,C,P,F(xiàn)為頂點的四邊形是平行四邊形?請說明理由;
(3)若存在點P,使∠PCF=450,請直接寫出相應的點P的坐標。

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在平面直角坐標系中,坐標原點為O,A點坐標為(4,0),B點坐標為(﹣1,0),以AB的中點P為圓心,AB為直徑作⊙P的正半軸交于點C.

(1)求經過A、B、C三點的拋物線所對應的函數解析式;
(2)設M為(1)中拋物線的頂點,求直線MC對應的函數解析式;
(3)試說明直線MC與⊙P的位置關系,并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:解答題

已知拋物線的頂點A(2,0),與y軸的交點為B(0,-1).

(1)求拋物線的解析式;
(2)在對稱軸右側的拋物線上找出一點C,使以BC為直徑的圓經過拋物線的頂點A.并求出點C的坐標以及此時圓的圓心P點的坐標.
(3)在(2)的基礎上,設直線x=t(0<t<10)與拋物線交于點N,當t為何值時,△BCN的面積最大,并求出最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

某高中學校為高一新生設計的學生單人桌的抽屜部分是長方體形.其中,抽屜底面周長為180cm,高為20cm.請通過計算說明,當底面的寬x為何值時,抽屜的體積y最大?最大為多少?(材質及其厚度等暫忽略不計).

查看答案和解析>>

同步練習冊答案