科目: 來源:北京市昌平區(qū)2011年中考一模數(shù)學(xué)試題 題型:059
現(xiàn)場(chǎng)學(xué)習(xí)題
問題背景:在△ABC中,AB、BC、AC
三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如下圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫在橫線上.________
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長(zhǎng)分別為、、,請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫出相應(yīng)的△ABC,并求出它的面積是:________.
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為、、(m>0,n>o,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫出示意圖,并求出△ABC的面積為:________.
查看答案和解析>>
科目: 來源:江蘇省鹽城初級(jí)中學(xué)2010-2011學(xué)年九年級(jí)下第一次調(diào)研考試數(shù)學(xué)試題(蘇科版) 題型:059
已知:如圖所示,△ABC為任意三角形,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△DEC.
(1)試猜想AE與BD有何關(guān)系?說明理由;
(2)若△ABC的面積為4 cm2,求四邊形ABDE的面積;
(3)請(qǐng)給△ABC添加條件,使旋轉(zhuǎn)得到的四邊形ABDE為矩形,并說明理由.
查看答案和解析>>
科目: 來源:2010年襄樊中考數(shù)學(xué)試題及答案 題型:059
如圖,一個(gè)含
45°的三角板HBE的兩條直角邊與正方形ABCD的兩鄰邊重合,過E點(diǎn)作EF⊥AE交∠DCE的角平分線于F點(diǎn),試探究線段AE與EF的數(shù)量關(guān)系,并說明理由.查看答案和解析>>
科目: 來源:2010年黑龍江省大興安嶺地區(qū)中考數(shù)學(xué)試卷 題型:059
已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,3),(-3,0),(2,-5),且與x軸交于A、B兩點(diǎn).
(1)試確定此二次函數(shù)的解析式;
(2)判斷點(diǎn)P(-2,3)是否在這個(gè)二次函數(shù)的圖象上?如果在,請(qǐng)求出△PAB的面積;如果不在,試說明理由.
查看答案和解析>>
科目: 來源:湖北省荊州市2010年初中升學(xué)考試數(shù)學(xué)試卷 題型:059
如圖,將正方形ABCD中的△ABD繞對(duì)稱中心O旋轉(zhuǎn)至△GEF的位置,EF交AB于M,GF交BD于N.請(qǐng)猜想BM與FN有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目: 來源:北京市門頭溝2010屆初三第一次統(tǒng)一練習(xí)數(shù)學(xué)試卷 題型:059
閱讀下列材料:
在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是________;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請(qǐng)你就圖2的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.
查看答案和解析>>
科目: 來源:北京市房山區(qū)2010屆初三第一次統(tǒng)一練習(xí)數(shù)學(xué)試卷 題型:059
閱讀下列材料:
小明遇到一個(gè)問題:如圖,正方形ABCD中,E、F、G、H分別是AB、BC、CD和DA邊上靠近A、B、C、D的n等分點(diǎn),連結(jié)AF、BG、CH、DE,形成四邊形MNPQ.求四邊形MNPQ與正方形ABCD的面積比(用含n的代數(shù)式表示).
小明的做法是:
先取n=2,如圖,將△ABN繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90゜至△CB,再將△ADM繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°至△CD,得到5個(gè)小正方形,所以四邊形MNPQ與正方形ABCD的面積比是;
然后取n=3,如圖,將△ABN繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至△CB,再將△ADM繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°至△CD,得到10個(gè)小正方形,所以四邊形MNPQ與正方形ABCD的面積比是,即;
……
請(qǐng)你參考小明的做法,解決下列問題:
(1)在下圖中探究n=4時(shí)四邊形MNPQ與正方形ABCD的面積比(在圖上畫圖并直接寫出結(jié)果);
(2)下圖是矩形紙片剪去一個(gè)小矩形后的示意圖,請(qǐng)你將它剪成三塊后再拼成正方形(在圖中畫出并指明拼接后的正方形).
查看答案和解析>>
科目: 來源:2006年江蘇省常州市初中畢業(yè)、升學(xué)統(tǒng)一考試數(shù)學(xué)試題 題型:059
將正六邊形紙片按下列要求分割(每次分割,紙片均不得有剩余);
第一次分割:將正六邊形紙片分割成三個(gè)全等的菱形,然后選取其中的一個(gè)菱形在分割成一個(gè)正六邊形和兩個(gè)全等的正三角形;
第二次分割:將第一次分割后所得的正六邊形紙片分割成三個(gè)全等的菱形,然后選取其中的一個(gè)菱形在分割成一個(gè)正六邊形和兩個(gè)全等的正三角形;
按上述分割方法進(jìn)行下去……
(1)請(qǐng)你在下圖中畫出第一次分割的示意圖;
(2)若原正六邊形的面積為a,請(qǐng)你通過操作和觀察,將第1次,第2次,第3次分割后所得的正六邊形的面積填入下表:
(3)觀察所填表格,并結(jié)合操作,請(qǐng)你猜想:分割后所得的正六邊形的面積S與分割次數(shù)a有何關(guān)系?(S用含a和n的代數(shù)式表示,不需要寫出推理過程).
查看答案和解析>>
科目: 來源:2006年湖北省襄樊市中考數(shù)學(xué)試卷(非課改區(qū)) 題型:059
已知x1、x2是方程x2-2kx+k2-k=0的兩個(gè)實(shí)數(shù)根.是否存在常數(shù)k,使成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2006年廣東省高中階段學(xué)校招生考試數(shù)學(xué)試題(非實(shí)驗(yàn)區(qū)) 題型:059
如圖,在□
ABCD中,∠DAB=60°,點(diǎn)F,E分別在AB,CD的延長(zhǎng)線上,且CF=BC,AE=AD.(1)
求證:四邊形AFCE是平行四邊形;(2)
若去掉已知條件的“∠DAB=60°”,上述的結(jié)論還成立嗎?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com