科目: 來源:2013年內蒙古包頭市高級中等學校招生考試數學 題型:044
已知拋物線y=x2-3x-的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C.
(1)求點A、B、C、D的坐標;
(2)在y軸的正半軸上是否存在點P,使以P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;
(3)取點E(,0)和點F(0,),直線L經過E、F兩點,點G是線段BD的中點.
①點G是否在直線L上,請說明理由;
②在拋物線上是否存在點M,使點M關于直線L的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2013年內蒙古包頭市高級中等學校招生考試數學 題型:044
如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.
(1)如圖①,當時,求的值;
(2)如圖②,當DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.
查看答案和解析>>
科目: 來源:2013年寧夏高級中等學校招生考試數學 題型:044
在□ABCD中,P是AB邊上的任意一點,過P點作PE⊥AB,交AD于E,連結CE,CP.已知∠A=60°;
(1)若BC=8,AB=6,當AP的長為多少時,△CPE的面積最大,并求出面積的最大值.
(2)試探究當△CPE≌△CPB時,□ABCD的兩邊AB與BC應滿足什么關系?
查看答案和解析>>
科目: 來源:2013年廣西省南寧市高級中等學校招生考試數學 題型:044
如圖,拋物線y=ax2+c(c≠0)經過C(2,0)D(0,-1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,-2)且平行于X軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當k=0時,直線y=kx與x軸重合,求出此時+的值;
②試說明無論k取何值,+的值都等于同一個常數.
查看答案和解析>>
科目: 來源:2013年山東省東營市高級中等學校招生考試數學 題型:044
已知拋物線y=ax2+bx+c的頂點A(2,0),與y軸的交點為B(0,-1).
(1)求拋物線的解析式;
(2)在對稱軸右側的拋物線上找出一點C,使以BC為直徑的圓經過拋物線的頂點A.并求出點C的坐標以及此時圓的圓心P點的坐標.
(3)在(2)的基礎上,設直線x=t(0<t<10)與拋物線交于點N,當t為何值時,△BCN的面積最大,并求出最大值.
查看答案和解析>>
科目: 來源:2013年山東省東營市高級中等學校招生考試數學 題型:044
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目: 來源:2013年山東省臨沂市高級中等學校招生考試數學 題型:044
如圖,拋物線經過三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2013年山東省日照市高級中等學校招生考試數學 題型:044
已知,如圖(a),拋物線y=ax2+bx+c經過點A(x1,0),B(x2,0),C(0,-2),其頂點為D.以AB為直徑的⊙M交y軸于點E、F,過點E作⊙M的切線交x軸于點N.∠ONE=30°,|x1-x2|=8.
(1)求拋物線的解析式及頂點D的坐標;
(2)連結AD、BD,在(1)中的拋物線上是否存在一點P,使得△ABP與△ADB相似?若存在,求出P點的坐標;若不存在,說明理由;
(3)如圖(b),點Q為上的動點(Q不與E、F重合),連結AQ交y軸于點H,問:AH·AQ是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目: 來源:2013年上海市高級中等學校招生考試數學 題型:044
在矩形ABCD中,點P是邊AD上的動點,聯(lián)結BP,線段BP的垂直平分線交邊BC于點Q,垂足為點M,聯(lián)結QP(如圖).已知AD=13,AB=5,設AP=x,BQ=y(tǒng).
(1)求y關于x的函數解析式,并寫出x的取值范圍;
(2)當以AP長為半徑的⊙P和以QC長為半徑的⊙Q外切時,求x的值;
(3)點E在邊CD上,過點E作直線QP的垂線,垂足為F,如果EF=EC=4,求x的值.
查看答案和解析>>
科目: 來源:2013年上海市高級中等學校招生考試數學 題型:044
如圖,在平面直角坐標系xoy中,頂點為M的拋物線y=ax2+bx(a>0)經過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=120°.
(1)求這條拋物線的表達式;
(2)聯(lián)結OM,求∠AOM的大;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com