相關(guān)習(xí)題
 0  146692  146700  146706  146710  146716  146718  146722  146728  146730  146736  146742  146746  146748  146752  146758  146760  146766  146770  146772  146776  146778  146782  146784  146786  146787  146788  146790  146791  146792  146794  146796  146800  146802  146806  146808  146812  146818  146820  146826  146830  146832  146836  146842  146848  146850  146856  146860  146862  146868  146872  146878  146886  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某校的圍墻上端由一段段相同的凹曲拱形柵欄組成,如圖所示,其拱形圖形為拋物線的一部分,柵欄的跨徑AB間,按相同的間距0.2米用5根立柱加固,拱高OC為0.6米.
(1)以O(shè)為原點(diǎn),OC所在的直線為y軸建立平面直角坐標(biāo)系,請(qǐng)根據(jù)以上的數(shù)據(jù),拋物線y=ax2中a=______;
(2)計(jì)算一段柵欄所需立柱的總長度為______米.(精確到0.1米)

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

有一種計(jì)算機(jī)控制的線切割機(jī)床,它可以自動(dòng)切割只有直線和拋物線組成的零件,工作時(shí)只要先確定零件上各點(diǎn)的坐標(biāo)及線段與拋物線的關(guān)系式作為程序輸入計(jì)算機(jī)即可.今有如圖所示的零件需按A?B?C?D?A的路徑切割,請(qǐng)按下表將程序編完整.
線段或拋物線 起始坐標(biāo) 關(guān)系式 終點(diǎn)坐標(biāo) 
 拋物線APB   
 線段BC (1,0) x=1(1,-1)
 線段CD (1,-1)  
 線段AD   (1,0)


查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

小明代表班級(jí)參加校運(yùn)會(huì)的鉛球項(xiàng)目,他想:“怎樣才能將鉛球推得更遠(yuǎn)呢”,于是找來小剛做了如下的探索:小明手摯鉛球在控制每次推出時(shí)用力相同的條件下,分別沿與水平線成30°、45°、60°方向推了三次.鉛球推出后沿拋物線形運(yùn)動(dòng).如圖,小明推鉛球時(shí)的出手點(diǎn)距地面2m,以鉛球出手點(diǎn)所在豎直方向?yàn)閥軸、地平線為x軸建立直角坐標(biāo)系,分別得到的有關(guān)數(shù)據(jù)如下表:
鉛球的方向與水平線的夾角304560
鉛球運(yùn)行所得到的拋物線解析式 y1=-0.06(x-3)2+2.5 y2=
______(x-4)2+3.6
 y3=-0.22(x-3)2+4
估測(cè)鉛球在最高點(diǎn)的坐標(biāo) P1(3,2.5) P2(4,3.6) P3(3,4)
鉛球落點(diǎn)到小明站立處的水平距離 9.5m 

______m
 7.3m
(1)請(qǐng)你求出表格中兩橫線上的數(shù)據(jù),寫出計(jì)算過程,并將結(jié)果填入表格中的橫線上;
(2)請(qǐng)根據(jù)以上數(shù)據(jù),對(duì)如何將鉛球推得更遠(yuǎn)提出你的建議.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知一拋物線形大門,其地面寬度AB=18m.一同學(xué)站在門內(nèi),在離門腳B點(diǎn)1m遠(yuǎn)的D處,垂直地面立起一根1.7m長的木桿,其頂端恰好頂在拋物線形門上C處.根據(jù)這些條件,請(qǐng)你求出該大門的高h(yuǎn).

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在黃州服裝批發(fā)市場,某種品牌的時(shí)裝當(dāng)季節(jié)將來臨時(shí),價(jià)格呈上升趨勢(shì),設(shè)這種時(shí)裝開始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開始保持30元的價(jià)格平穩(wěn)銷售;從第12周開始,當(dāng)季節(jié)即將過去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷售.
(1)試建立銷售價(jià)y與周次x之間的函數(shù)關(guān)系式;
(2)若這種時(shí)裝每件進(jìn)價(jià)Z與周次x次之間的關(guān)系為Z=-0.125(x-8)2+12.1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時(shí),每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

據(jù)統(tǒng)計(jì)每年由于汽車超速行駛而造成的交通事故是造成人員死亡的主要原因之一.行駛中的汽車,在剎車后由于慣性的原因,還要繼續(xù)向前滑行一段距離才能停住,這段距離稱為“剎車距離”.為了測(cè)定某種型號(hào)汽車的剎車性能(車速不超過140千米/時(shí)),對(duì)這種汽車的剎車距離進(jìn)行測(cè)試,測(cè)得的數(shù)據(jù)如下表:
剎車時(shí)車速(千米/時(shí))51015202530
剎車距離(米)0.10.30.611.52.1
(1)在如圖所示的直角坐標(biāo)系中以車速為x軸,以剎車距離為y軸描出這些數(shù)據(jù)所表示的點(diǎn),并用光滑的曲線連接這些點(diǎn),得到某函數(shù)的大致圖象.
(2)觀察圖象估計(jì)函數(shù)的類型,并確定一個(gè)滿足這些數(shù)據(jù)的函數(shù)解析式.
(3)一輛該型號(hào)的汽車在國道上發(fā)生了交通事故,現(xiàn)場測(cè)得剎車距離為46.5米,請(qǐng)推測(cè)剎車時(shí)速度是多少?請(qǐng)問在事故發(fā)生時(shí),汽車是否超速行駛?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

市政府為改善居民的居住環(huán)境,修建了環(huán)境幽雅的環(huán)城公園,為了給公園內(nèi)的草評(píng)定期噴水,安裝了一些自動(dòng)旋轉(zhuǎn)噴水器,如圖所示,設(shè)噴水管AB高出地面1.5m,在B處有一個(gè)自動(dòng)旋轉(zhuǎn)的噴水頭,-瞬間噴出的水流呈拋物線狀.噴頭B與水流最高點(diǎn)C的連線與地平面成45°的角,水流的最高點(diǎn)C離地平面距離比噴水頭B離地平面距離高出2m,水流的落地點(diǎn)為D.在建立如圖所示的直角坐標(biāo)系中:
(1)求拋物線的函數(shù)解析式;
(2)求水流的落地點(diǎn)D到A點(diǎn)的距離是多少m?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(25):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某機(jī)械租賃公司有同一型號(hào)的機(jī)械設(shè)備40套.經(jīng)過一段時(shí)間的經(jīng)營發(fā)現(xiàn):當(dāng)每套機(jī)械設(shè)備的月租金為270元時(shí),恰好全部租出.在此基礎(chǔ)上,當(dāng)每套設(shè)備的月租金每提高10元時(shí),這種設(shè)備就少租出一套,且沒租出的一套設(shè)備每月需支出費(fèi)用(維護(hù)費(fèi)、管理費(fèi)等)20元.設(shè)每套設(shè)備的月租金為x(元),租賃公司出租該型號(hào)設(shè)備的月收益(收益=租金收入-支出費(fèi)用)為y(元).
(1)用含x的代數(shù)式表示未出租的設(shè)備數(shù)(套)以及所有未出租設(shè)備(套)的支出費(fèi);
(2)求y與x之間的二次函數(shù)關(guān)系式;
(3)當(dāng)月租金分別為300元和350元時(shí),租賃公司的月收益分別是多少元?此時(shí)應(yīng)該出租多少套機(jī)械設(shè)備?請(qǐng)你簡要說明理由;
(4)請(qǐng)把(2)中所求出的二次函數(shù)配方成y=a(x+2+的形式,并據(jù)此說明:當(dāng)x為何值時(shí),租賃公司出租該型號(hào)設(shè)備的月收益最大?最大月收益是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(26):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè).考慮了所有因素后該零售店每個(gè)面包的成本是5角.
設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤與賣出的面包個(gè)數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(26):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

路在山腹行是滬蓉西高速公路的顯著特點(diǎn)之一,全線共有隧道37座,共計(jì)長達(dá)742421.2米.下圖是正在修建的廟埡隧道的截面,截面是由一拋物線和一矩形構(gòu)成,其行車道CD總寬度為8米,隧道為單行線2車道.
(1)建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求出隧道拱拋物線的解析式;
(2)在隧道拱的兩側(cè)距地面3米高處各安裝一盞路燈,在(1)的平面直角坐標(biāo)系中用坐標(biāo)表示其中一盞路燈的位置;
(3)為了保證行車安全,要求行駛車輛頂部(設(shè)為平頂)與隧道拱在豎直方向上高度之差至少有0.5米.現(xiàn)有一輛汽車,裝載貨物后,其寬度為4米,車載貨物的頂部與路面的距離為2.5米,該車能否通過這個(gè)隧道?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案