相關(guān)習(xí)題
 0  145714  145722  145728  145732  145738  145740  145744  145750  145752  145758  145764  145768  145770  145774  145780  145782  145788  145792  145794  145798  145800  145804  145806  145808  145809  145810  145812  145813  145814  145816  145818  145822  145824  145828  145830  145834  145840  145842  145848  145852  145854  145858  145864  145870  145872  145878  145882  145884  145890  145894  145900  145908  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c的圖象交x軸于點(diǎn)A(x,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對(duì)稱軸是直線x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過B、C、D三點(diǎn)的拋物線的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點(diǎn),以MN為一邊,拋物線上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式;
(4)當(dāng)<x<4時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請(qǐng)求出;若無,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-3,1).
(1)求點(diǎn)B的坐標(biāo);
(2)求過A,O,B三點(diǎn)的拋物線的解析式;
(3)設(shè)拋物線的對(duì)稱軸為直線l,P是直線l上的一點(diǎn),且△PAB的面積等于△AOB的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=x2-2x+m與x軸交于點(diǎn)A(x1,0)、B(x2,0)(x2>x1),
(1)若點(diǎn)P(-1,2)在拋物線y=x2-2x+m上,求m的值;
(2)若拋物線y=ax2+bx+m與拋物線y=x2-2x+m關(guān)于y軸對(duì)稱,點(diǎn)Q1(-2,q1)、Q2(-3,q2)都在拋物線y=ax2+bx+m上,則q1、q2的大小關(guān)系是______;
(請(qǐng)將結(jié)論寫在橫線上,不要寫解答過程);(友情提示:結(jié)論要填在答題卡相應(yīng)的位置上)
(3)設(shè)拋物線y=x2-2x+m的頂點(diǎn)為M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,矩形OABC的邊OC,OA分別與x軸,y軸重合,點(diǎn)B的坐標(biāo)是(,1),點(diǎn)D是AB邊上一個(gè)動(dòng)點(diǎn)(與點(diǎn)A不重合),沿OD將△OAD翻折,點(diǎn)A落在點(diǎn)P處.
(1)若點(diǎn)P在一次函數(shù)y=2x-1的圖象上,求點(diǎn)P的坐標(biāo);
(2)若點(diǎn)P在拋物線y=ax2圖象上,并滿足△PCB是等腰三角形,求該拋物線解析式;
(3)當(dāng)線段OD與PC所在直線垂直時(shí),在PC所在直線上作出一點(diǎn)M,使DM+BM最小,并求出這個(gè)最小值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),點(diǎn)B在x正半軸上,且∠ABO=30度.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在x軸上取兩點(diǎn)M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示),并求出當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與原點(diǎn)O重合時(shí)t的值;
(3)如果取OB的中點(diǎn)D,以O(shè)D為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(39):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊作如圖所示的正方形CDEF.連接AF并延長(zhǎng)交x軸的正半軸于點(diǎn)B,連接OF.
(1)猜想OD和DE之間的數(shù)量關(guān)系,并說明理由;
(2)設(shè)OD=t,求OB的長(zhǎng)(用含t的代數(shù)式表示);
(3)若點(diǎn)B在E的右側(cè)時(shí),△BFE與△OFE能否相似?若能,請(qǐng)你求出此時(shí)經(jīng)過O,A,B三點(diǎn)的拋物線解析式;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

設(shè)拋物線y=ax2+bx-2與x軸交于兩個(gè)不同的點(diǎn)A(-1,0)、B(m,0),與y軸交于點(diǎn)C,且∠ACB=90度.
(1)求m的值和拋物線的解析式;
(2)已知點(diǎn)D(1,n)在拋物線上,過點(diǎn)A的直線y=x+1交拋物線于另一點(diǎn)E.若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,△BDP的外接圓半徑等于______

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,BC是⊙O的直徑,點(diǎn)A在圓上,且AB=AC=4. P為AB上一點(diǎn),過P作PE⊥AB分別交BC、OA于E、F.
(1)設(shè)AP=1,求△OEF的面積;
(2)設(shè)AP=a(0<a<2),△APF、△OEF的面積分別記為S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一個(gè)實(shí)數(shù)a,使S<?若存在,求出一個(gè)a的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(40):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:如圖,直角梯形ABCD中,AD∥BC,∠A=90°,BC=CD=10,sinC=
(1)求梯形ABCD的面積;
(2)點(diǎn)E,F(xiàn)分別是BC,CD上的動(dòng)點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)C出發(fā)向點(diǎn)D運(yùn)動(dòng),若兩點(diǎn)均以每秒1個(gè)單位的速度同時(shí)出發(fā),連接EF.求△EFC面積的最大值,并說明此時(shí)E,F(xiàn)的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案