相關(guān)習題
 0  144677  144685  144691  144695  144701  144703  144707  144713  144715  144721  144727  144731  144733  144737  144743  144745  144751  144755  144757  144761  144763  144767  144769  144771  144772  144773  144775  144776  144777  144779  144781  144785  144787  144791  144793  144797  144803  144805  144811  144815  144817  144821  144827  144833  144835  144841  144845  144847  144853  144857  144863  144871  366461 

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

已知:如圖,Rt△ABC中,∠BAC=90°,D是AC上一點,∠ABD=∠C,直線EF過點D,與BA的延長線相交于F,且EF⊥BC,垂足為E.
(1)寫出圖中所有與△ABD相似的三角形;
(2)探索:設,是否存在這樣的t值,使得△ADF∽△EDB?說明理由.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

已知:如圖,在△ABC中,點D、E分別在邊AB、AC上,連接DE并延長交BC的延長線于點F,連接DC、BE.若∠BDE+∠BCE=180度.
(1)寫出圖中三對相似三角形(注意:不得添加字母和線);
(2)請在你所找出的相似三角形中選取一對,說明它們相似的理由.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

已知∠MON=90°,等邊三角形ABC的一個頂點A是射線OM上的一定點,頂點B與點O重合,頂點C在∠MON內(nèi)部.
(1)當頂點B在射線ON上移動到B1時,連接AB1,請在∠MON內(nèi)部作出以AB1為一邊的等邊三角形AB1C1(保留作圖痕跡,不寫作法和證明);
(2)設AB1與OC交于點Q,AC的延長線與B1C1交于點D.求證:△ACQ∽△AB1D;
(3)連接CC1,試猜想∠ACC1為多少度?并證明你的猜想.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G、H.
(1)求證:△BAE∽△BCF;
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

如圖所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE與AB相交于F.
(1)求證:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的長.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C-D-A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線l∥AD,與線段CD的交點為E,與折線A-C-B的交點為Q.點M運動的時間為t(秒).
(1)當t=0.5時,求線段QM的長;
(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103102024088565331/SYS201311031020240885653024_ST/0.png">是否為定值?若是,試求這個定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

問題背景
(1)如圖,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:
四邊形DBFE的面積S=______,△EFC的面積S1=______,△ADE的面積S2=______.
探究發(fā)現(xiàn)
(2)在(1)中,若BF=a,F(xiàn)C=b,DE與BC間的距離為h.請證明S2=4S1S2
拓展遷移
(3)如圖,?DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結(jié)論求△ABC的面積.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

設△A1B1C1的面積是S1,△A2B2C2的面積為S2(S1<S2),當△A1B1C1∽△A2B2C2,且時,則稱△A1B1C1與△A2B2C2有一定的“全等度”.如圖,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,連接AC.
(1)若AD=DC,求證:△DAC與△ABC有一定的“全等度”;
(2)你認為:△DAC與△ABC有一定的“全等度”正確嗎?若正確,說明理由;若不正確,請舉出一個反例說明.

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

如圖,直角梯形ABCD中,∠ADC=90°,AD∥BC,點E在BC上,點F在AC上,∠DFC=∠AEB.
(1)求證:△ADF∽△CAE;
(2)當AD=8,DC=6,點E、F分別是BC、AC的中點時,求直角梯形ABCD的面積?

查看答案和解析>>

科目: 來源:第24章《圖形的相似》中考題集(18):24.3 相似三角形(解析版) 題型:解答題

如圖,邊長為5的正方形OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AG交于點P.
(1)當點E坐標為(3,0)時,試證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)(t>0),結(jié)論CE=EP是否成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案