相關習題
 0  140021  140029  140035  140039  140045  140047  140051  140057  140059  140065  140071  140075  140077  140081  140087  140089  140095  140099  140101  140105  140107  140111  140113  140115  140116  140117  140119  140120  140121  140123  140125  140129  140131  140135  140137  140141  140147  140149  140155  140159  140161  140165  140171  140177  140179  140185  140189  140191  140197  140201  140207  140215  366461 

科目: 來源:第2章《二次函數》?碱}集(26):2.8 二次函數的應用(解析版) 題型:解答題

在平面直角坐標系中,給定以下五點A(-2,0),B(1,0),C(4,0),D(-2,),E(0,-6).從這五點中選取三點,使經過這三點的拋物線滿足以平行于y軸的直線為對稱軸.我們約定:把經過三點A、E、B的拋物線表示為拋物線AEB.(如圖所示)
(1)問符合條件的拋物線還有哪幾條?不求解析式,請用約定的方法一一表示出來;
(2)在(1)中是否存在這樣的一條拋物線,它與余下的兩點所確定的直線不相交?如果存在,試求出拋物線及直線的解析式;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

如圖,拋物線y=-x2+5x+n經過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式;
(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數》常考題集(27):2.8 二次函數的應用(解析版) 題型:解答題

已知:如圖,等腰梯形ABCD的邊BC在x軸上,點A在y軸的正方向上,A(0,6),D(4,6),且AB=2
(1)求點B的坐標;
(2)求經過B、D兩點的拋物線y=ax2+bx+6的解析式;
(3)在(2)中所求的拋物線上是否存在一點P,使得?若存在,請求出該點坐標,若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

已知:如圖,二次函數y=2x2-2的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,直線x=m(m>1)與x軸交于點D.
(1)求A、B、C三點的坐標;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數式表示);
(3)在(2)成立的條件下,試問:拋物線y=2x2-2上是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.
(1)如圖,P為AD上的一點,滿足∠BPC=∠A,求AP的長;
(2)如果點P在AD邊上移動(點P與點A、D不重合),且滿足∠BPE=∠A,PE交直線BC于點E,同時交直線DC于點Q.
①當點Q在線段DC的延長線上時,設AP=x,CQ=y,求y關于x的函數關系式,并寫出自變量x的取值范圍;
②當CE=1時,寫出AP的長.(不必寫解答過程)

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

已知:拋物線y=ax2+4ax+t與x軸的一個交點為A(-1,0)
(1)求拋物線與x軸的另一個交點B的坐標;
(2)D是拋物線與y軸的交點,C是拋物線上的一點,且以AB為一底的梯形ABCD的面積為9,求此拋物線的解析式;
(3)E是第二象限內到x軸、y軸的距離的比為5:2的點,如果點E在(2)中的拋物線上,且它與點A在此拋物線對稱軸的同側,問:在拋物線的對稱軸上是否存在點P,使△APE的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

二次函數y=ax2+bx+c的圖象的一部分如圖所示.已知它的頂點M在第二象限,且經過點A(1,0)和點B(0,1).
(1)試求a,b所滿足的關系式;
(2)設此二次函數的圖象與x軸的另一個交點為C,當△AMC的面積為△ABC面積的倍時,求a的值;
(3)是否存在實數a,使得△ABC為直角三角形?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°;四邊形DEFG為矩形,DE=cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.
(1)求AC的長度;
(2)將Rt△ABC以每秒1 cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止移動,設Rt△ABC與矩形DEFG重疊部分的面積為y,請求出重疊面積y(cm2)與移動時間x(s)的函數關系式(時間不包括起始與終止時刻);
(3)在(2)的基礎上,當Rt△ABC移動至重疊部分的面積時,將Rt△ABC沿邊AB向上翻折,并使點C與點C’重合,請求出翻折后Rt△ABC’與矩形DEFG重疊部分的周長.

查看答案和解析>>

科目: 來源:第2章《二次函數》?碱}集(27):2.8 二次函數的應用(解析版) 題型:解答題

二次函數y=ax2+bx+c的圖象與x軸交于B、C兩點,與y軸交于A點.
(1)根據圖象確定a、b、c的符號,并說明理由;
(2)如果點A的坐標為(0,-3),∠ABC=45°,∠ACB=60°,求這個二次函數的解析式.

查看答案和解析>>

科目: 來源:第2章《二次函數》常考題集(27):2.8 二次函數的應用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于點A、B,與y軸交于點C,OC=4,AO=2OC,且拋物線對稱軸為直線x=-3.
(1)求該拋物線的函數表達式;
(2)己知矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在AC、BC上,設OD=m,矩形DEFG的面積為S,當矩形DEFG的面積S取最大值時,連接DF并延長至點M,使,求出此時點M的坐標;
(3)若點Q是拋物線上一點,且橫坐標為-4,點P是y軸上一點,是否存在這樣的點P,使得△BPQ是直角三角形?如果存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案