相關習題
 0  129564  129572  129578  129582  129588  129590  129594  129600  129602  129608  129614  129618  129620  129624  129630  129632  129638  129642  129644  129648  129650  129654  129656  129658  129659  129660  129662  129663  129664  129666  129668  129672  129674  129678  129680  129684  129690  129692  129698  129702  129704  129708  129714  129720  129722  129728  129732  129734  129740  129744  129750  129758  366461 

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設拋物線的頂點為D,在其對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最。咳舸嬖,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當紙板Ⅰ移動至△PEF處時,設PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應的函數(shù)關系式;
(2)當點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

直線y=-x+6分別與x軸、y軸交于點A、B,經過A、B兩點的拋物線與x軸的另一交點為C,且其對稱軸為x=3.
(1)求這條拋物線對應的函數(shù)關系式;
(2)設D(x,y)是拋物線在第一象限內的一個點,點D到直線AB的距離為d、試寫出d關于x的函數(shù)關系式,這個函數(shù)是否有最大值或最小值?如果有,并求這個值和此時點D的坐標;如果沒有,說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負半軸于點D(-9,0)
(1)求A,C兩點的坐標;
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=:3?若存在,請求出此時點P的坐標;若不存在,請說明理由.(注意:本題中的結果均保留根號)

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知:如圖,Rt△AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負半軸上,C為OA上一點且OC=OB,拋物線y=(x-2)(x-m)-(p-2)(p-m)(m、p為常數(shù)且m+2≥2p>0)經過A、C兩點.
(1)用m、p分別表示OA、OC的長;
(2)當m、p滿足什么關系時,△AOB的面積最大.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點在第二象限,A(1,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點C經過拋物線y=x2+4x+3的頂點?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關系式及自變量t的取值范圍.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知拋物線y=ax2+bx+c的頂點A在x軸上,與y軸的交點為B(0,1),且b=-4ac.
(1)求拋物線的解析式;
(2)在拋物線上是否存在一點C,使以BC為直徑的圓經過拋物線的頂點A?若不存在,說明理由;若存在,求出點C的坐標,并求出此時圓的圓心點P的坐標;
(3)根據(2)小題的結論,你發(fā)現(xiàn)B、P、C三點的橫坐標之間、縱坐標之間分別有何關系?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案