相關(guān)習(xí)題
 0  127345  127353  127359  127363  127369  127371  127375  127381  127383  127389  127395  127399  127401  127405  127411  127413  127419  127423  127425  127429  127431  127435  127437  127439  127440  127441  127443  127444  127445  127447  127449  127453  127455  127459  127461  127465  127471  127473  127479  127483  127485  127489  127495  127501  127503  127509  127513  127515  127521  127525  127531  127539  366461 

科目: 來源:第7章《銳角三角函數(shù)》中考題集(23):7.5 解直角三角形(解析版) 題型:解答題

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點(diǎn)P,使它到三角形頂點(diǎn)的距離之和最小,則稱點(diǎn)P為△ABC的費(fèi)馬點(diǎn),此時PA+PB+PC的值為△ABC的費(fèi)馬距離;
②如圖(B),若四邊形ABCD的四個頂點(diǎn)在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點(diǎn)P為等邊△ABC外接圓的上任意一點(diǎn).求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費(fèi)馬點(diǎn)和費(fèi)馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在上任取一點(diǎn)P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費(fèi)馬點(diǎn)P,并請指出線段______的長度即為△ABC的費(fèi)馬距離.

(3)知識應(yīng)用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點(diǎn)P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長度最小,求輸水管總長度的最小值.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(23):7.5 解直角三角形(解析版) 題型:解答題

如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長交AD于F.
(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;
(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(23):7.5 解直角三角形(解析版) 題型:解答題

如圖,已知P為∠AOB的邊OA上的一點(diǎn),以P為頂點(diǎn)的∠MPN的兩邊分別交射線OB于M、N兩點(diǎn),且∠MPN=∠AOB=α(α為銳角).當(dāng)∠MPN以點(diǎn)P為旋轉(zhuǎn)中心,PM邊與PO重合的位置開始,按逆時針方向旋轉(zhuǎn)(∠MPN保持不變)時,M、N兩點(diǎn)在射線OB上同時以不同的速度向右平行移動.設(shè)OM=x,ON=y(y>x>0),△POM的面積為S.若sinα=,OP=2.
(1)當(dāng)∠MPN旋轉(zhuǎn)30°(即∠OPM=30°)時,求點(diǎn)N移動的距離;
(2)求證:△OPN∽△PMN;
(3)寫出y與x之間的關(guān)系式;
(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(23):7.5 解直角三角形(解析版) 題型:解答題

如圖,A、P、B、C是⊙O上的四點(diǎn),∠APC=∠BPC=60°,AB與PC交于Q點(diǎn).
(1)判斷△ABC的形狀,并證明你的結(jié)論;
(2)求證:
(3)若∠ABP=15°,△ABC的面積為4,求PC的長.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(24):7.5 解直角三角形(解析版) 題型:解答題

已知:等邊△ABC的邊長為a.
探究(1):如圖1,過等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=a;結(jié)論2. AD+BE+CF=a;
②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請給予證明;如果不成立,請說明理由.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(24):7.5 解直角三角形(解析版) 題型:解答題

如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),且AE與DE分別平分∠BAD和∠ADC.
(1)求證:AE⊥DE;
(2)設(shè)以AD為直徑的半圓交AB于F,連接DF交AE于G,已知CD=5,AE=8,求的值.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(24):7.5 解直角三角形(解析版) 題型:解答題

在△ABC中,∠A、∠B、∠C所對的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個特殊的倍角三角形,那么對于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個倍角三角形的三條邊的長,使這三條邊長恰為三個連續(xù)的正整數(shù).

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(24):7.5 解直角三角形(解析版) 題型:解答題

已知平行四邊形ABCD中,對角線AC和BD相交于點(diǎn)O,AC=10,BD=8.
(1)若AC⊥BD,試求四邊形ABCD的面積;
(2)若AC與BD的夾角∠AOD=60°,求四邊形ABCD的面積;
(3)試討論:若把題目中“平行四邊形ABCD”改為“四邊形ABCD”,且∠AOD=θ,AC=a,BD=b,試求四邊形ABCD的面積(用含θ,a,b的代數(shù)式表示).

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(24):7.5 解直角三角形(解析版) 題型:解答題

已知平行四邊形ABCD,AD=a,AB=b,∠ABC=α.點(diǎn)F為線段BC上一點(diǎn)(端點(diǎn)B,C除外),連接AF,AC,連接DF,并延長DF交AB的延長線于點(diǎn)E,連接CE.
(1)當(dāng)F為BC的中點(diǎn)時,求證:△EFC與△ABF的面積相等;
(2)當(dāng)F為BC上任意一點(diǎn)時,△EFC與△ABF的面積還相等嗎?說明理由.

查看答案和解析>>

科目: 來源:第7章《銳角三角函數(shù)》中考題集(24):7.5 解直角三角形(解析版) 題型:解答題

在邊長為6的菱形ABCD中,動點(diǎn)M從點(diǎn)A出發(fā),沿A?B?C向終點(diǎn)C運(yùn)動,連接DM交AC于點(diǎn)N.

(1)如圖1,當(dāng)點(diǎn)M在AB邊上時,連接BN:
①求證:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求點(diǎn)M到AD的距離及tanα的值.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時,△ADN為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案