精英家教網(wǎng)如圖,在直角坐標(biāo)系中OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)C的坐標(biāo)是(0,4),點(diǎn)P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形,折疊后,點(diǎn)B落在平面內(nèi)點(diǎn)B′處,則B′點(diǎn)的坐標(biāo)為
 
分析:要求B′點(diǎn)的坐標(biāo),需求B′D,CD的值,需先由折疊的性質(zhì)求得B′C=BC=4,∠B′CP=∠BCP=30°,所以∠DCB′=30°,再利用相關(guān)角的三角函數(shù)來求出B′的坐標(biāo).
解答:解:過點(diǎn)B′作B′D⊥y軸于D,B′E⊥x軸于E,
∵OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)C的坐標(biāo)是(0,4),精英家教網(wǎng)
∴BC=OC=4,
∵∠BPC=60°,
∴由折疊的性質(zhì)求得B′C=BC=4,∠B′CP=∠BCP=30°
∴∠DCB′=90°-∠B′CP-∠BCP=30°,
∴B′D=
1
2
B′C=
1
2
CB=2,CD=
3
2
BC=2
3
,
∴OD=OC-CD=4-2
3

∴B’點(diǎn)的坐標(biāo)為(2,4-2
3
)
點(diǎn)評(píng):此題考查在坐標(biāo)系中的折疊問題,綜合考查了正方形的性質(zhì)、直角三角形的性質(zhì)、點(diǎn)的坐標(biāo)等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6

(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案