(2008•益陽)△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準(zhǔn)確地畫出正方形.
小聰和小明各給出了一種想法,請(qǐng)你在Ⅱa和Ⅱb的兩個(gè)問題中選擇一個(gè)你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計(jì)算出正方形的邊長(zhǎng)就能求出BD和CE的長(zhǎng),從而確定D點(diǎn)和E點(diǎn),再畫正方形DEFG就容易了.
設(shè)△ABC的邊長(zhǎng)為2,請(qǐng)你幫小聰求出正方形的邊長(zhǎng).(結(jié)果用含根號(hào)的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長(zhǎng)也能畫出正方形.具體作法是:
①在AB邊上任取一點(diǎn)G′,如圖作正方形G′D′E′F′;
②連接BF′并延長(zhǎng)交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.
你認(rèn)為小明的作法正確嗎?說明理由.

【答案】分析:(1)根據(jù)正方形的性質(zhì)可以得到GD=FE,∠GDB=∠FEC=90°,利用等邊三角形得到∠B=∠C=60°,然后利用全等三角形的判定定理就可以證明了;
2a.設(shè)正方形的邊長(zhǎng)為x,作△ABC的高AH,可以求出AH的長(zhǎng),然后根據(jù)△AGF∽△ABC利用其對(duì)應(yīng)邊成比例
可以列出關(guān)于x的方程,然后求出x,也就求出了正方形的邊長(zhǎng);
2b.首先作一個(gè)正方形,然后利用位似圖形作圖就可以得到正方形DEFG,利用作法中的平行線可以得到比例線段,再根據(jù)比例線段就可以證明所作的圖形是正方形了.
解答:證明:Ⅰ.∵DEFG為正方形
∴GD=FE,∠GDB=∠FEC=90°(2分)
∵△ABC是等邊三角形
∴∠B=∠C=60°(3分),
在△BDG和△CEF中,

∴△BDG≌△CEF(AAS)(5分)

Ⅱ解法一:設(shè)正方形的邊長(zhǎng)為x,作△ABC的高AH,
求得(7分)
由△AGF∽△ABC得:(9分)
解之得:(或)(10分)
解法二:設(shè)正方形的邊長(zhǎng)為x,則(7分)
在Rt△BDG中,tan∠B=
(9分)
解之得:(或)(10分)
解法三:設(shè)正方形的邊長(zhǎng)為x,則AG=GF=x,GB=2-AG=2-x,
(7分)
由勾股定理得:(9分)
解之得:(10分)
Ⅱb.解:正確(6分)
由已知可知,四邊形GDEF為矩形(7分)
∵FE∥F′E′,
∴△BE′F′∽△BEF,

同理

又∵F’E’=F’G’
∴FE=FG
∴矩形GDEF為正方形(10分)
點(diǎn)評(píng):此題主要考查了全等三角形,相似三角形的判定及矩形及正方形的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:選擇題

(2008•益陽)物理學(xué)知識(shí)告訴我們,一個(gè)物體所受到的壓強(qiáng)P與所受壓力F及受力面積S之間的計(jì)算公式為.當(dāng)一個(gè)物體所受壓力為定值時(shí),那么該物體所受壓強(qiáng)P與受力面積S之間的關(guān)系用圖象表示大致為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(聞堰鎮(zhèn)中 魯亞紅)(解析版) 題型:解答題

(2008•益陽)我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請(qǐng)你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;
(3)開動(dòng)腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(9)(解析版) 題型:解答題

(2008•益陽)我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請(qǐng)你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;
(3)開動(dòng)腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年吉林省長(zhǎng)春市實(shí)驗(yàn)中學(xué)初三第六次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•益陽)我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請(qǐng)你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;
(3)開動(dòng)腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省安慶市桐城市白馬中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

(2008•益陽)物理學(xué)知識(shí)告訴我們,一個(gè)物體所受到的壓強(qiáng)P與所受壓力F及受力面積S之間的計(jì)算公式為.當(dāng)一個(gè)物體所受壓力為定值時(shí),那么該物體所受壓強(qiáng)P與受力面積S之間的關(guān)系用圖象表示大致為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案