【題目】一服裝批發(fā)店出售某品牌童裝,每件進價120元,批發(fā)價200元,多買優(yōu)惠;凡是一次買10件以上的,每多買一件,所買的全部服裝每件就降低1元,但是最低價為為每件160元,
(1)求一次至少買多少件,才能以最低價購買?
(2)寫出服裝店一次銷售x件時,獲利潤y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲批發(fā)了46件,乙批發(fā)了50件,店主卻發(fā)現(xiàn)賣46件賺的錢反而比賣50件賺的錢多,你能用數(shù)學(xué)知識解釋這一現(xiàn)象嗎?為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價每件160元至少提高到多少?
【答案】(1)一次至少買50件,才能以最低價購買.(2);(3)店家應(yīng)把最低價每件160元至少提高到165元.
【解析】試題分析:(1)設(shè)一次至少買x件,則每件的價格為[200-(x-10)]元,根據(jù)降價后的價格為160元建立方程求出其解即可;
(2)根據(jù)總利潤=銷售數(shù)量×每支的利潤建立解析式即可;
(3)根據(jù)(2)的解析化為頂點式,根據(jù)頂點式的性質(zhì)就可以求出結(jié)論.
試題解析:
(1)設(shè)一次至少買x件,才能以最低價購買,由題意,得
200-(x-10)×1=160,
解得:x=50.
答:一次至少買50件,才能以最低價購買.
(2)當0<x≤10時,y=(200-120)x=80x
當10<x≤50時,y=[(200-120)-(x-10)×1] ×x=-x2+90x,
當x>50時,y=(160-120)x=40x.
綜上:y與x的關(guān)系式為
(3)由y=-x2+90x=-(x-45)2+2025 知對稱軸x=45,
當45<x≤50時,y隨x的增大而減小,即當賣的件數(shù)越多時,利潤越小.
即出現(xiàn)了賣46件賺的錢比賣50件嫌的錢多的現(xiàn)象.
當x=45時,最低售價為200-(45-10)=165(元).
∴為了不出現(xiàn)這種現(xiàn)象,在其他優(yōu)惠條件不變的情況下,店家應(yīng)把最低價每件160元至少提高到165元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微信搶紅包活動已經(jīng)超越了紅包本身,成為我們中國人春節(jié)前后釋放情感、滿足心理訴求和社交的重要載體,2019年除夕到初五期間,共有8.23億人次收發(fā)微信紅包同比增長7.12%,用科學(xué)記數(shù)法表示8.23億這個數(shù)為( 。
A.8.23×107B.8.23×108C.8.23×109D.0.83×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的有( ) ①單項式﹣2πR2(π是圓周率)的系數(shù)是﹣2②23x5是8次單項式③xy﹣1是一次二項式.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為時,四邊形AMDN是矩形;
②當AM的值為時,四邊形AMDN是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人一根頭發(fā)的直徑大約為 0.000 071 8 米,數(shù)“0.000 071 8”用科學(xué)記數(shù)法表示正確的是 ( )
A.-7.18×10 5B.-0.718×10 5
C.7.18×10 5D.0.718×10 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,CD⊥AB于點D,AO平分∠BAC,交CD于點O,E為AB上一點,且AE=AC。
(1)求證:△AOC≌△A0E;
(2)求證:OE∥BC。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法屬于真命題的是()
A.過一點有且只有一條直線與已知直線平行
B.同位角相等
C.垂直于同一條直線的兩條直線互相平行
D.對頂角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= ,對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).
(1)證明:當∠AOF=90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉(zhuǎn)過程中,AF與CE總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時∠AOF度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com