【題目】如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關(guān)系?請(qǐng)說明理由.
(2)求∠DBE的度數(shù).
(3)若把AD左右平行移動(dòng),在平行移動(dòng)AD的過程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出此時(shí)∠ADB的度數(shù);若不存在,請(qǐng)說明理由.
【答案】(1) AD∥BC,理由見解析;(2) 40°;(3)存在,∠ADB=60°
【解析】試題分析:(1)根據(jù)平行線的性質(zhì),以及等量代換證明∠ADC+∠C=180°,即可證得AD∥BC;(2)由直線AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得∠ABC的度數(shù),又由∠DBE=∠ABC,即可求得∠DBE的度數(shù).
(3)首先設(shè)∠ABD=∠DBF=∠BDC=x°,由直線AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)與兩直線平行,內(nèi)錯(cuò)角相等,可求得∠BEC與∠ADB的度數(shù),又由∠BEC=∠ADB,即可得方程:x°+40°=80°-x°,解此方程即可求得答案.
試題解析:(1)AD∥BC
理由:∵AB∥CD,
∴∠A+∠ADC=180°,
又∵∠A=∠C
∴∠ADC+∠C=180°,
∴AD∥BC;
(2)∵AB∥CD,
∴∠ABC=180°-∠C=80°,
∵∠DBF=∠ABD,BE平分∠CBF,
∴∠DBE=∠ABF+∠CBF=∠ABC=40°;
(3)存在.
理由:設(shè)∠ABD=∠DBF=∠BDC=x°.
∵AB∥CD,
∴∠BEC=∠ABE=x°+40°;
∵AB∥CD,
∴∠ADC=180°-∠A=80°,
∴∠ADB=80°-x°.
若∠BEC=∠ADB,
則x°+40°=80°-x°,
得x°=20°.
∴存在∠BEC=∠ADB=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,
(1)AC=______;
(2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)解析式為S=_____.
(3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?
(4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、與之間的函數(shù)關(guān)系如圖所示.
(1)甲采摘園的門票是_____元,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____元;
(2)當(dāng)時(shí),求與的函數(shù)表達(dá)式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格;
(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中, , ,是邊的中點(diǎn),,分別是,上的動(dòng)點(diǎn),連接,,則的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,CD是∠ACB的平分線,∠ADE=70°,∠ACB=40°,求∠EDC和∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在將式子(m>0)化簡(jiǎn)時(shí),
小明的方法是:===;
小亮的方法是: ;
小麗的方法是:.
則下列說法正確的是( 。
A. 小明、小亮的方法正確,小麗的方法不正確
B. 小明、小麗的方法正確,小亮的方法不正確
C. 小明、小亮、小麗的方法都正確
D. 小明、小麗、小亮的方法都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com