在△ABC中,AD是角平分線,
AB
BD
=
4
3
,若BC=12,則△ABC的周長(zhǎng)是
28
28
分析:作出圖形,過(guò)點(diǎn)B作BE∥AC交AD的延長(zhǎng)線于點(diǎn)E,然后求出∠E=∠BAD,根據(jù)等角對(duì)等邊的性質(zhì)可得AB=BE,再根據(jù)△ACD和△EBD相似,利用相似三角形對(duì)應(yīng)邊成比例列式求出
AC
CD
=
4
3
,然后求出AB+AC=16,從而得解.
解答:解:如圖,過(guò)點(diǎn)B作BE∥AC交AD的延長(zhǎng)線于點(diǎn)E,
∴∠CAD=∠E,
∵AD是角平分線,
∴∠BAD=∠CAD,
∴∠E=∠BAD,
∴AB=BE,
由BE∥AC可得△ACD∽△EBD,
BE
BD
=
AC
CD

AB
BD
=
4
3
,
AC
CD
=
4
3
,
AB
BD
=
AC
CD
=
4
3
,
AB+AC
BD+CD
=
4
3
,
∵BC=12,
∴AB+AC=
4
3
×12=16,
∴△ABC的周長(zhǎng)是16+12=28.
故答案為:28.
點(diǎn)評(píng):本題考查了角平分線的性質(zhì),相似三角形的判定與性質(zhì),作輔助線構(gòu)造出相似三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AD是BC上的中線,BC=4,∠ADC=30°,把△ADC沿AD所在直線翻折后點(diǎn)C落在點(diǎn)C′的位置,那么點(diǎn)D到直線BC′的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD是BC邊上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的長(zhǎng).(結(jié)果保留根號(hào))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州二模)如圖,在△ABC中,AD是它的角平分線,∠C=90°,E在AB邊上,以AE為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,AD的弦心距為1,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD是∠BAC的平分線,DE、DF分別是△ABD和△ACD的高線,求證:AD⊥EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案