【題目】如圖,四邊形ABCD中,∠ABC90°,AB4,BC3,CD12,AD13.求四邊形ABCD的面積.

【答案】36

【解析】

連接AC,在直角三角形ABC中,由ABBC的長(zhǎng),利用勾股定理求出AC的長(zhǎng),再由ADCD的長(zhǎng),利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.

連接AC,如圖所示:

∵∠B=90°,∴△ABC為直角三角形,
AB=4BC=3,
∴根據(jù)勾股定理得:AC==5,
AD=13,CD=12,
AD2=132=169CD2+AC2=122+52=144+25=169,
CD2+AC2=AD2
∴△ACD為直角三角形,∠ACD=90°
S四邊形ABCD=SABC+SACD=ABBC+ACCD=×3×4+×12×5=36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.

(1)畫出ABC向上平移6個(gè)單位得到的A1B1C1

(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中.


1)若點(diǎn)E、F分別在ABAD上,且AE=DF.試判斷DECF的數(shù)量及位置關(guān)系,并說(shuō)明理由;
2)若P、QM、N是正方形ABCD各邊上的點(diǎn),PQMN相交,且PQ=MN,問(wèn)PQMN成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,AB=AC,CD是∠ACB的平分線,DEBC,交AC于點(diǎn) E

1)求證:DE=CE

2)若∠CDE=25°,求∠A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點(diǎn)M,N分別在ABAD邊上滑動(dòng),若MN=6PN=4,在滑動(dòng)過(guò)程中,點(diǎn)A與點(diǎn)P的距離AP的最大值為(  )

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=5,線段AB的垂直平分線DE分別交邊ABAC于點(diǎn)ED


1)若∠A=40°,求∠DBC的度數(shù);
2)若△BCD的周長(zhǎng)為8,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購(gòu)進(jìn)一批電腦和電子白板,經(jīng)過(guò)市場(chǎng)考察得知,購(gòu)買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬(wàn)元,購(gòu)買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬(wàn)元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬(wàn)元?

2)根據(jù)學(xué)校實(shí)際,需購(gòu)進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過(guò)30萬(wàn)元,但不低于28萬(wàn)元,該校有幾種購(gòu)買方案?

3)上面的哪種方案費(fèi)用最低?按費(fèi)用最低方案購(gòu)買需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),與x軸交于另一點(diǎn)B

求此拋物線的解析式;

若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動(dòng)點(diǎn)不與點(diǎn)B重合,點(diǎn)Q在線段MB上移動(dòng),且,設(shè)線段,,求x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

在同一平面直角坐標(biāo)系中,兩條直線,分別與拋物線交于點(diǎn)E、G,與中的函數(shù)圖象交于點(diǎn)F問(wèn)四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中.BC5cmBP、CP分別是∠ABC和∠ACB的平分線,且PDAB,PEAC,則△PDE的周長(zhǎng)是______cm

查看答案和解析>>

同步練習(xí)冊(cè)答案