【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的垂直平分線上;④S△DAC:S△ABC=1:3.其中正確的是__________________.(填所有正確說法的序號)
【答案】4
【解析】
①連接NP,MP,根據(jù)SSS定理可得△ANP≌△AMP,故可得出結(jié)論;
②先根據(jù)三角形內(nèi)角和定理求出∠CAB的度數(shù),再由AD是∠BAC的平分線得出∠1=∠2=30°,根據(jù)直角三角形的性質(zhì)可知∠ADC=60°;
③根據(jù)∠1=∠B可知AD=BD,故可得出結(jié)論;
④先根據(jù)直角三角形的性質(zhì)得出∠2=30°,CD=AD,再由三角形的面積公式即可得出結(jié)論.
①連接NP,MP.在△ANP與△AMP中,∵,∴△ANP≌△AMP,則∠CAD=∠BAD,故AD是∠BAC的平分線,故此選項正確;
②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.
∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此選項正確;
③∵∠1=∠B=30°,∴AD=BD,∴點D在AB的中垂線上,故此選項正確;
④∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=ACCD=ACAD,∴S△ABC=ACBC=ACAD=ACAD,∴S△DAC:S△ABC=1:3,故此選項正確.
故答案為:①②③④.
科目:初中數(shù)學 來源: 題型:
【題目】下列因式分解,正確的是( )
A. x2y2-z2=x2(y+z)(y-z) B. -x2y+4xy-5y=-y(x2+4x+5)
C. (x+2)2-9=(x+5)(x-1) D. 9-12a+4a2=-(3-2a)2
【答案】C
【解析】解析:選項A.用平方差公式法,應(yīng)為x2y2-z2=(xy+z)·(xy-z),故本選項錯誤.
選項B.用提公因式法,應(yīng)為-x2y+ 4xy-5y=- y(x2- 4x+5),故本選項錯誤.
選項C.用平方差公式法,(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1),故本選項正確.
選項D.用完全平方公式法,應(yīng)為9-12a+4a2=(3-2a)2,故本選項錯誤.
故選C.
點睛:(1)完全平方公式: .
(2)平方差公式:(a+b)(a-b)= .
(3)常用等價變形:
,
,
.
【題型】單選題
【結(jié)束】
10
【題目】已知a,b,c分別是△ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是( 。
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(背景)如圖(a),△ABC與△ADE均是頂角為40°的等腰三角形,BC,DE分別是底邊,求證:BD=CE.
(探究)如圖(b),△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.
①∠AEB的度數(shù)為________;②線段BE與AD之間的數(shù)量關(guān)系是________.
(拓展)如圖(c),△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.
①求∠AEB的度數(shù);
②請直接寫出線段CM,AE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】莫小貝在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C,A,她借助此圖求出了△ABC 的面積.
(1)莫小貝所畫的△ABC 的三邊長分別是AB=_______,BC=______,AC=______;△ABC 的面積為________.
(2)已知△ABC 中,AB=,BC=,AC=,請你根據(jù)莫小貝的思路,在圖2中畫出△ABC ,并直接寫出△ABC的面積_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在數(shù)軸上有一小木棒AB,若平移木棒,使B落在A處,則A′所表示的數(shù)為 -1,若將A落在B處時,則B′所表示的數(shù)14,它的兩個端點A、B所表示的數(shù)分別是 、 .
(2)老師給東東出了一道關(guān)于年齡的數(shù)學題:我像你那么小時,你才兩歲;你像我那么大時,我已經(jīng)44歲了,你猜我有多少歲?親愛的同學,你能不能利用上一題的方法幫助小東求出老師的年齡呢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com