【題目】已知,直線,點(diǎn)為平面內(nèi)一點(diǎn),連接與.
(1)如圖1,點(diǎn)在直線、之間,若,,求的度數(shù).
(2)如圖2,點(diǎn)在直線、之間,與的角平分線相交于點(diǎn),寫(xiě)出與之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)如圖3,點(diǎn)在直線下方,與的角平分線相交于點(diǎn),直接寫(xiě)出與的數(shù)量關(guān)系.
【答案】(1)∠APC=80°;(2)∠AKC=∠APC;(3)∠AKC=∠APC.
【解析】
(1)先過(guò)P作PE∥AB,根據(jù)平行線的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;
(2)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;
(3)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠AKE-∠CKE=∠BAK-∠DCK,同理可得,∠APC=∠BAP-∠DCP,再根據(jù)角平分線的定義,得出∠BAK-∠DCK=∠BAP-∠DCP=(∠BAP-∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC.
(1)如圖1,過(guò)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如圖2,過(guò)K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
過(guò)P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,
∴∠BAK+∠DCK=∠BAP+∠DCP= (∠BAP+∠DCP)= ∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC.
理由:如圖3,過(guò)K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE∠CKE=∠BAK∠DCK,
過(guò)P作PF∥AB,
同理可得,∠APC=∠BAP∠DCP,
∵∠BAP與∠DCP的角平分線相交于點(diǎn)K,
∴∠BAK∠DCK=∠BAP∠DCP=(∠BAP∠DCP)=∠APC,
∴∠AKC=∠APC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購(gòu)進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價(jià)比2014年下降了11元/盒,該商店用2400元購(gòu)進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價(jià)均為60元/盒.
(1)2014年這種禮盒的進(jìn)價(jià)是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤(rùn)的年增長(zhǎng)率相同,問(wèn)年增長(zhǎng)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC直角三角形,延長(zhǎng)AB到D,使BD=BC,在BC上取BE=AB,連接DE.△ABC順時(shí)針旋轉(zhuǎn)后能與△EBD重合,那么:
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?旋轉(zhuǎn)角是多少度?
(2)AC與DE的關(guān)系怎樣?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開(kāi)始的4分內(nèi)只進(jìn)水不出水,在隨后的若干分內(nèi)既進(jìn)水又出水,之后只有出水不進(jìn)水,每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量(單位:升)與時(shí)間(單位:分)之間的關(guān)系如圖所示,則進(jìn)水速度是______升/分,出水速度是______升/分,的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù) y=-2x+5 的圖像分別與 x 軸,y 軸交于點(diǎn)A、B,以線段AB 為邊在第一象限內(nèi)作等腰 RtABC,BAC=90 ,求過(guò) B、C 兩點(diǎn)的直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如下表:
那么關(guān)于它的圖象,下列判斷正確的是( 。
A. 開(kāi)口向上 B. 與x軸的另一個(gè)交點(diǎn)是(3,0)
C. 與y軸交于負(fù)半軸 D. 在直線x=1的左側(cè)部分是下降的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)求值:
(2)用消元法解方程組時(shí),兩位同學(xué)的解法如下:
解法一:
由①-②,得.
解法二:
由②得,,③
把①代入③,得.
①反思:上述兩個(gè)解題過(guò)程中有無(wú)計(jì)算錯(cuò)誤?若有誤,請(qǐng)?jiān)阱e(cuò)誤處打“×”.
②請(qǐng)選擇一種你喜歡的方法,完成解答.
(3)求不等式組的正整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市中學(xué)生舉行足球聯(lián)賽,共賽了17輪(即每隊(duì)均需參賽17場(chǎng)),記分辦法是勝-場(chǎng)得3分。平場(chǎng)得1分,負(fù)一場(chǎng)得0分.
(1)在這次足球賽中,若小虎足球隊(duì)踢平場(chǎng)數(shù)與踢負(fù)場(chǎng)數(shù)相同,共積16分,求該隊(duì)勝了幾場(chǎng);
(2)在這次足球賽中,若小虎足球隊(duì)總積分仍為16分,且踢平場(chǎng)數(shù)是踢負(fù)場(chǎng)數(shù)的整數(shù)倍,試推算小虎足球隊(duì)踢負(fù)場(chǎng)數(shù)的情況有幾種,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com