【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,ADCD,垂足為D,AD交⊙O 于E,連接CE.(1)求證:CD 是⊙O 的切線
(2)若E是弧AC的中點(diǎn),⊙O 的半徑為1,求圖中陰影部分的面積。
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)由AC為角平分線得到一對(duì)角相等,再由OA=OC,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行得到OC與AD平行,根據(jù)AD垂直于CD,得到OC垂直于CD,即可得證;
(2)根據(jù)E為弧AC的中點(diǎn),得到弧AE=弧EC,利用等弧對(duì)等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.
試題解析:解:(1)∵AC為∠DAB的平分線,∴∠DAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴CD與圓O相切;
(2)連接EB,交OC于F.∵E為弧AC的中點(diǎn),∴弧AE==弧EC,∴AE=EC,∴∠EAC=∠ECA.又∵∠EAC=∠OAC,∴∠ECA=∠OAC,∴CE∥OA.又∵OC∥AD,∴四邊形AOCE是平行四邊形,∴CE=OA,AE=OC.又∵OA=OC=1,∴四邊形AOCE是菱形.∵AB為直徑,得到∠AEB=90°,∴EB∥CD.∵CD與⊙O相切,C為切點(diǎn),∴OC⊥CD,∴OC∥AD,∵點(diǎn)O為AB的中點(diǎn),∴OF為△ABE的中位線,∴OF=AE=,即CF=DE=,在Rt△OBF中,根據(jù)勾股定理得:EF=FB=DC=,則S陰影=S△DEC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.
(1)AE與FC會(huì)平行嗎?說明理由;
(2)AD與BC的位置關(guān)系如何?為什么?
(3)BC平分∠DBE嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△CED都是等腰直角三角形,∠BCA=∠DCE=90°,且點(diǎn)D在線段AB上,連接AE.
(1)求證:①△BCD≌△ACE;②∠DAE=90°;
(2)若AB=8,當(dāng)點(diǎn)D在線段AB上什么位置時(shí),四邊形ADCE的周長最小?請(qǐng)說明并求出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明手上一張扇形紙片OAB.現(xiàn)要求在紙片上截一個(gè)正方形,使它的面積盡可能大.
小明的方案是:如圖,在扇形紙片OAB內(nèi),畫正方形CDEF,使C、D在OA上,F在OB上;連接OE并延長交弧AB于I,畫IH∥ED交OA于H,IJ∥OA交OB于J,再畫JG∥FC交OA于G.
(1)你認(rèn)為小明畫出的四邊形GHIJ是正方形嗎?如果是,請(qǐng)證明.如果不是,請(qǐng)說明理由.
(2)如果扇形OAB的圓心角∠AOB=30°,OA=6cm,小明截得的四邊形GHIJ面積是多少(結(jié)果精確到0.1cm).
(3)(1)中小明畫出的四邊形GHIJ如果是正方形,我們把它叫做扇形的內(nèi)接正方形(四個(gè)頂點(diǎn)分別在扇形的半徑和弧上).請(qǐng)你再畫出一種不同于圖(1)的扇形的內(nèi)接正方形(保留畫圖痕跡,不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰繞底角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°后得到,如果,那么兩個(gè)三角形的重疊部分面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)騎車從家到學(xué)校要經(jīng)過一段先上坡后下坡的路,在這段路上小強(qiáng)騎車的距離s(千米)與騎車的時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖中信息回答下列問題:
(1)小強(qiáng)去學(xué)校時(shí)下坡路長 千米;
(2)小強(qiáng)下坡的速度為 千米/分鐘;
(3)若小強(qiáng)回家時(shí)按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車走這段路的時(shí)間是 分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與的圖象如圖,則下列結(jié)論①②,且的值隨著值的增大而減小.③關(guān)于的方程的解是④當(dāng)時(shí),,其中正確的有___________.(只填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com