【題目】如圖,在ABCD中,點EAD上,以BE為折痕將ABE翻折,點A恰好落在CD邊上的點F. 已知EDF的周長為12,BCF的周長為22,求CF的長.

【答案】FC=5.

【解析】

根據(jù)翻折變換的性質(zhì)、平行四邊形的性質(zhì)證明AB+BC=17,此為解題的關(guān)鍵性結(jié)論;運用FCB的周長為22,求出FC的長,即可解決問題.

如圖,∵四邊形ABCD為平行四邊形,

AD=BC,AB=DC;

由題意得:AE=EF,AB=BF

∵△FDE的周長為12,FCB的周長為22,∴DE+DF+EF=12CF+BC+BF=22,

∴(DE+EA+DF+CF+BC+AB=34,即2AB+BC=34

AB+BC=17,即BF+BC=17

FC=22-17=5.

故答案為:FC=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一次函數(shù)y=-2x+4,下列結(jié)論錯誤的是(  )

A. 函數(shù)的圖象與x軸的交點坐標(biāo)是

B. 函數(shù)值隨自變量的增大而減小

C. 函數(shù)的圖象不經(jīng)過第三象限

D. 函數(shù)的圖象向下平移4個單位長度得的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,定點A(﹣2,0),動點B在直線y=x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+2180°,∠3=∠B,試說明DEBC.下面是部分推導(dǎo)過程,請你在括號內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容:

證明:∵∠1+2180°(已知)

1=∠4    

∴∠2+4180°(等量代換)

EHAB   

∴∠B      

∵∠3=∠B(已知)

∴∠3=∠EHC(等量代換)

DEBC    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式 成立的一對有理數(shù),共生有理數(shù)對,記為(,),如:數(shù)對(,),(,),都是共生有理數(shù)對

1)數(shù)對(),(,)中是共生有理數(shù)對嗎?說明理由.

2)若()是共生有理數(shù)對,則(,)是共生有理數(shù)對嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年中考前,張老師為了解全市初三男生體育考試項目的選擇情況(每人限選一項),在全市范圍內(nèi)隨機調(diào)查了部分初三男生,將調(diào)查結(jié)果分成五類:A.推實心球(2kg);B.立定跳遠;C.半場運球;D.跳繩;E.其他,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學(xué)生中有32000名男生,試估計全市初三男生中選半場運球的人數(shù)有多少人;
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B.立定跳遠;C.半場運球;D.跳繩中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位探險者到沙漠進行探險,沒有了水,需要尋找水源.為了不致于走散,他們用兩部對話機聯(lián)系,已知對話機的有效距離為15千米.早晨800甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午1000,甲、乙二人相距多遠?還能保持聯(lián)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情爆發(fā)以來,口罩成為需求最為迫切的防護物資.在這個關(guān)鍵時刻,我國某企業(yè)利用自身優(yōu)勢轉(zhuǎn)產(chǎn)口罩,這背后不僅體現(xiàn)出企業(yè)強烈的社會責(zé)任感,更是我國人民團結(jié)一心抗擊疫情的決心.據(jù)悉該企業(yè)3月份的口罩日產(chǎn)能已達到500萬只,預(yù)計今后數(shù)月內(nèi)都將保持同樣的產(chǎn)能,則3月份(按31天計算)該企業(yè)生產(chǎn)的口罩總數(shù)量用科學(xué)記數(shù)法表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點A按逆時針方向旋轉(zhuǎn)一個銳角α到△AB′C′的位置,連接CC′,若CC′∥AB,則旋轉(zhuǎn)角α的度數(shù)為( )

A.40°
B.50°
C.30°
D.35°

查看答案和解析>>

同步練習(xí)冊答案