如圖,三角形ABO繞點(diǎn)O旋轉(zhuǎn)得到三角形CDO,在這個(gè)旋轉(zhuǎn)過(guò)程中:
(1)旋轉(zhuǎn)中心是______,旋轉(zhuǎn)角是______.
(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A、B分別移到了______.
(3)若AO=3cm,則CO=______.
(4)若∠AOC=60°,∠AOD=20°,則∠BOD=______,∠DOC=______.

解:(1)旋轉(zhuǎn)中心是點(diǎn)O,旋轉(zhuǎn)角是∠BOD或∠AOC;

(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A、B分別移到了C、D;

(3)∵AO=3cm,
∴CO=AO=3cm;

(4)∵∠AOC=60°,
∴∠BOD=∠AOC=60°,
∠DOC=∠AOC-∠AOD=60°-20°=40°.
故答案為:(1)點(diǎn)O,∠BOD或∠AOC;(2)C、D;(3)3cm;(4)60°,40°.
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì),對(duì)應(yīng)邊BO、DO的交點(diǎn)即為旋轉(zhuǎn)中心,夾角為旋轉(zhuǎn)角;
(2)結(jié)合圖形找出A、B的對(duì)應(yīng)點(diǎn)即可;
(3)根據(jù)旋轉(zhuǎn)變換只改變圖形的位置不改變圖形的形狀與大小可得CO=AO;
(4)根據(jù)∠AOC、∠BOD都等于旋轉(zhuǎn)角解答,再根據(jù)∠DOC=∠AOC-∠AOD代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),是基礎(chǔ)題,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1:△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.將△AOD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得△OBE,從而構(gòu)造出以AD、BC、
OC+OD的長(zhǎng)度為三邊長(zhǎng)的△BCE(如圖2).若△BOC的面積為1,則△BCE面積等于
2
2


如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
①在圖3中利用圖形變換畫出并指明以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形(保留作圖痕跡);
②若△ABC的面積為1,則以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,三角形ABO繞點(diǎn)O旋轉(zhuǎn)得到三角形CDO,在這個(gè)旋轉(zhuǎn)過(guò)程中:
(1)旋轉(zhuǎn)中心是
點(diǎn)O
點(diǎn)O
,旋轉(zhuǎn)角是
∠AOC
∠AOC
∠BOD
∠BOD
;
(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A、B分別轉(zhuǎn)到了
點(diǎn)C、D
點(diǎn)C、D
;
(3)如果AO=4cm,那么CO=
4cm
4cm
;
(4)如果AB=1cm,那么CD=
1cm
1cm

(5)如果∠AOC=60°,∠AOB=20°,那么∠BOD=
60°
60°
,∠COD=
20°
20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,三角形ABO繞點(diǎn)O旋轉(zhuǎn)得到三角形CDO,在這個(gè)旋轉(zhuǎn)過(guò)程中:
(1)旋轉(zhuǎn)中心是
點(diǎn)O
點(diǎn)O
,旋轉(zhuǎn)角是
∠BOD或∠AOC
∠BOD或∠AOC

(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A、B分別移到了
C、D
C、D

(3)若AO=3cm,則CO=
3cm
3cm

(4)若∠AOC=60°,∠AOD=20°,則∠BOD=
60°
60°
,∠DOC=
40°
40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年天津市中考二模數(shù)學(xué)試卷(解析版) 題型:填空題

如圖1:△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°. 將△AOD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得△OBE,從而構(gòu)造出以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的△BCE(如圖2).若△BOC的面積為1,則△BCE面積等于___________.

 

 

    如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.

 

 

①在圖3中利用圖形變換畫出并指明以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形(保留作圖痕跡);

②若△ABC的面積為1,則以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的三角形的面積等于____

 

查看答案和解析>>

同步練習(xí)冊(cè)答案