【題目】如圖,已知直線∥,且和,分別交于A,B兩點,和,相交于C,D兩點,點P在直線AB上,
(1)當點P在A,B兩點間運動時,問∠1,∠2,∠3之間的關系是否發(fā)生變化?如果不發(fā)生變化它們之間滿足什么關系?并說明理由;
(2)如果點P在A,B兩點外側運動時,試探究∠ACP,∠BDP,∠CPD之間的關系,并說明理由.
【答案】(1)∠3=∠1+∠2,見解析;(2)∠CPD=∠BDP-∠ACP或∠CPD =∠ACP -∠BDP.
【解析】
(1)過點P作l1的平行線,根據平行線的性質進行解題;
(2)過點P作l1的平行線PF,由平行線的性質可得出l1∥l2∥PF,由此即可得出結論.
解:(1)如圖1,過點P作PQ∥l1,
∵PQ∥l1,
∴∠1=∠4(兩直線平行,內錯角相等),
∵PQ∥l1,l1∥l2(已知),
∴PQ∥l2(平行于同一條直線的兩直線平行),
∴∠5=∠2(兩直線平行,內錯角相等),
∵∠3=∠4+∠5,
∴∠3=∠1+∠2(等量代換);
(2)如圖2,過P點作PF∥BD交CD于F點,
∵AC∥BD,
∴PF∥AC,
∴∠ACP=∠CPF,∠BDP=∠DPF,
∴∠CPD=∠DPF-∠CPF=∠BDP-∠ACP;
如圖③,過P點作PF∥BD交CD于F點,
∵AC∥BD,
∴PF∥AC,
∴∠ACP=∠CPF,∠BDP=∠DPF,
∴∠CPD=∠CPF - ∠DPF =∠ACP -∠BDP;
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數y=的圖象于點B,AB=.
(1)求反比例函數的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副直角三角板如圖擺放,點C在EF上,AC經過點D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F分別在BC,CD上,將△ABE沿AE折疊,使點B落在AC上的點B′處,又將△CEF沿EF折疊,使點C落在EB′與AD的交點C′處.則CF:AB的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC( )
∴∠2= ( )
∵∠2=∠3(已知)
∴∠3=
∴CD∥FH( )
∴∠BDC=∠BHF( )
又∵FH⊥AB(已知)
∴ ( )
∵CD∥FH
∴∠BHF=∠BDC=90°( )
即CD⊥AB( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的方格地面上,標有編號A,B,C的3個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地面完全相同.
(1)一只自由飛行的鳥,將隨意地落在圖中的方格地面上,問小鳥落在草坪上的概率是多少?
(2)現從3個小方格空地中任意選取2個種植草坪,則剛好選取A和B的2個小方格空地種植草坪的概率是多少(用樹形圖或列表法求解)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A在第一象限,點B,C的坐標為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點P.若△ABC與△A'B'C'關于點P成中心對稱,則點A'的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個形狀、大小完全相同的含有30°、60°的直角三角板如圖①放置,PA、PB與直線MN重合,且三角板PAC、三角板PBD均可繞點P逆時針旋轉.
(1)直接寫出∠DPC的度數.
(2)如圖②,在圖①基礎上,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速為5°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速為1°/秒,(當PA轉到與PM重合時,兩三角板都停止轉動),在旋轉過程中,當PC與PB重合時,求旋轉的時間是多少?
(3)在(2)的條件下,PC、PB、PD三條射線中,當其中一條射線平分另兩條射線的夾角時,請直接寫出旋轉的時間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com