已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D,求△BCD中CD邊上的高h(yuǎn)的最大值.
(4)設(shè)E數(shù)學(xué)公式,當(dāng)∠ACB=90°,在線段AC上是否存在點(diǎn)F,使得直線EF將△ABC的面積平分?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說(shuō)明理由.

解:(1)∵拋物線 y=ax2+bx+c過(guò)點(diǎn)A(-3,0),B(1,0),
消去b,得 c=-3a.
∴點(diǎn)C的坐標(biāo)為(0,-3a),
答:點(diǎn)C的坐標(biāo)為(0,-3a).

(2)當(dāng)∠ACB=90°時(shí),
∠AOC=∠BOC=90°,∠OBC+∠BCO=90°,∠ACO+∠BCO=90°,
∴∠ACO=∠OBC,
∴△AOC∽△COB,
即 OC2=AO•OB,
∵AO=3,OB=1,
∴OC=,
∵∠ACB不小于90°,
∴OC≤,即-c≤,
由(1)得 3a≤,
∴a≤,
又∵a>0,
∴a的取值范圍為0<a≤,
答:系數(shù)a的取值范圍是0<a≤

(3)作DG⊥y軸于點(diǎn)G,延長(zhǎng)DC交x軸于點(diǎn)H,如圖.
∵拋物線 y=ax2+bx+c交x軸于A(-3,0),B(1,0).
∴拋物線的對(duì)稱軸為x=-1.
即-=-1,所以b=2a.
又由(1)有c=-3a.
∴拋物線方程為 y=ax2+2ax-3a,D點(diǎn)坐標(biāo)為(-1,-4a).
于是 CO=3a,GC=a,DG=1.
∵DG∥OH,
∴△DCG∽△HCO,
,即,得 OH=3,表明直線DC過(guò)定點(diǎn)H(3,0).
過(guò)B作BM⊥DH,垂足為M,即BM=h,
∴h=HB sin∠OHC=2 sin∠OHC.
∵0<CO≤,
∴0°<∠OHC≤30°,0<sin∠OHC≤
∴0<h≤1,即h的最大值為1,
答:△BCD中CD邊上的高h(yuǎn)的最大值是1.

(4)由(1)、(2)可知,當(dāng)∠ACB=90°時(shí),,
設(shè)AB的中點(diǎn)為N,連接CN,則N(-1,0),CN將△ABC的面積平分,
連接CE,過(guò)點(diǎn)N作NP∥CE交y軸于P,顯然點(diǎn)P在OC的延長(zhǎng)線上,從而NP必與AC相交,設(shè)其交點(diǎn)為F,連接EF,
因?yàn)镹P∥CE,所以S△CEF=S△CEN,
由已知可得NO=1,,而NP∥CE,
,得
設(shè)過(guò)N、P兩點(diǎn)的一次函數(shù)是y=kx+b,則,
解得:,
,①
同理可得過(guò)A、C兩點(diǎn)的一次函數(shù)為 ,②
解由①②組成的方程組得,
故在線段AC上存在點(diǎn)滿足要求.
答:當(dāng)∠ACB=90°,在線段AC上存在點(diǎn)F,使得直線EF將△ABC的面積平分,點(diǎn)F的坐標(biāo)是(-,-).
分析:(1)由拋物線 y=ax2+bx+c過(guò)點(diǎn)A(-3,0),B(1,0),得出c與a的關(guān)系,即可得出C點(diǎn)坐標(biāo);
(2)利用已知得出△AOC∽△COB,進(jìn)而求出OC的長(zhǎng)度,即可得出a的取值范圍;
(3)作DG⊥y軸于點(diǎn)G,延長(zhǎng)DC交x軸于點(diǎn)H,得出拋物線的對(duì)稱軸為x=-1,進(jìn)而求出△DCG∽△HCO,得出OH=3,過(guò)B作BM⊥DH,垂足為M,即BM=h,根據(jù)h=HB sin∠OHC求出0°<∠OHC≤30°,得到0<sin∠OHC≤,即可求出答案;
(4)連接CE,過(guò)點(diǎn)N作NP∥CD交y軸于P,連接EF,根據(jù)三角形的面積公式求出S△CAEF=S四邊形EFCB,根據(jù)NP∥CE,求出 ,設(shè)過(guò)N、P兩點(diǎn)的一次函數(shù)是y=kx+b,代入N、P的左邊得到方程組,求出直線NP的解析式,同理求出A、C兩點(diǎn)的直線的解析式,組成方程組求出即可.
點(diǎn)評(píng):本題主要考查對(duì)用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,三角形的面積,解二元一次方程,相似三角形的性質(zhì)和判定,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識(shí)點(diǎn)的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠精英家教網(wǎng)ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D,求△BCD中CD邊上的高h(yuǎn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知開(kāi)口向上的拋物線y=ax2-2x+|a|-4經(jīng)過(guò)點(diǎn)(0,-3).
(1)確定此拋物線的解析式;
(2)當(dāng)x取何值時(shí),y有最小值,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(x1,0)和B(x2,0)兩點(diǎn),xl和x2是方程x2+2x-精英家教網(wǎng)3=0的兩個(gè)根(x1<x2),而且拋物線與y軸交于C點(diǎn),∠ACB不小于90°
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo)和拋物線的對(duì)稱軸;
(2)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(3)求系數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(-3,0)、B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D,求△BCD中CD邊上的高h(yuǎn)的最大值.
(4)設(shè)E(-
12
,0)
,當(dāng)∠ACB=90°,在線段AC上是否存在點(diǎn)F,使得直線EF將△ABC的面積平分?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•烏魯木齊)已知開(kāi)口向上的拋物線y=ax2-2x+|a|-4經(jīng)過(guò)點(diǎn)(0,-3).
(1)此拋物線的解析式為
y=x2-2x-3
y=x2-2x-3
;
(2)當(dāng)x=
1
1
時(shí),y有最小值,這個(gè)最小值是
-4
-4

查看答案和解析>>

同步練習(xí)冊(cè)答案