如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,6).動(dòng)點(diǎn)Q從點(diǎn)O、動(dòng)點(diǎn)P從點(diǎn)A同時(shí)出發(fā),分別沿著OA方向、AB方向均以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為點(diǎn)C、D,連結(jié)CD、QC.

(1)求當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)設(shè)△QCD的面積為S,試求S與t之間的函數(shù)關(guān)系,并求S的最大值?
(3)若⊙P與線段QC只有一個(gè)交點(diǎn),請直接寫出t的取值范圍.

(1) 
(2)
S的最大值為15。
(3)

解析分析:(1)根據(jù)點(diǎn)A、B的坐標(biāo)求出OA、OB,利用勾股定理列式求出AB,根據(jù)點(diǎn)Q的速度表示出OQ,然后求出AQ,再根據(jù)直徑所對的圓周角是直角可得∠ADC=90°,再利用∠BAO的余弦表示出AD,然后列出方程求解即可。
解:∵A(8,0),B(0,6),∴OA=8,OB=6。
。
∵點(diǎn)Q的速度是1個(gè)單位長度/秒,∴OQ=t。∴AQ=OA-OQ=8-t。
∵⊙P的直徑為AC,∴∠ADC=90°。
,即,解得。
當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),AD=AQ,
,解得。
∴當(dāng)時(shí),點(diǎn)Q與點(diǎn)D重合。
(2)利用∠BAO的正弦表示出CD的長,然后分點(diǎn)Q、D重合前與重合后兩種情況表示出QD,再利用三角形的面積公式列式整理,然后根據(jù)二次函數(shù)的最值問題解答。
解:,即,解得
①點(diǎn)Q、D重合前,即時(shí),
∴△QCD的面積為。

∴當(dāng)t=時(shí),S有最大值為。
②點(diǎn)Q、D重合后,即時(shí),,
∴△QCD的面積為。
,∴當(dāng)時(shí),S隨t的增大而增大。
∴當(dāng)t=5時(shí),S有最大值為:
綜上所述,S與t的函數(shù)關(guān)系式為。
∵15>,∴S的最大值為15。
(3)①點(diǎn)Q、D重合前,即時(shí),CQ與⊙P相切時(shí)t的值最大,此時(shí),CQ⊥AB,AQ=8-t,
∵∠BAO=∠QAC,∠AOB=∠ACQ=90°,∴△ACQ∽△AOB。
,即,解得t=。
∴⊙P與線段QC只有一個(gè)交點(diǎn),t的取值范圍為
②點(diǎn)Q、D重合后,即時(shí),⊙P與線段QC只有一個(gè)交點(diǎn)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案