【題目】如圖,在RtABC中,∠ABC=90°,AB=6,BC=8,∠BAC與∠ACB的平分線相較于點(diǎn)E,過點(diǎn)EEFBCAC于點(diǎn)F,則EF的長(zhǎng)為________

【答案】

【解析】

延長(zhǎng)FEAB于點(diǎn)D,作EGBC、作EHAC,由EFBC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠DAE=HAE,從而知四邊形BDEG是正方形,再證△DAE≌△HAE、△CGE≌△CHEAD=AHCG=CH,設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,由AC=10可得x=2,即BD=DE=2AD=4,再證△ADF∽△ABC可得DF=,據(jù)此得出EF=DF-DE=

如圖,延長(zhǎng)FEAB于點(diǎn)D,作EGBC于點(diǎn)G,作EHAC于點(diǎn)H,

EFBC、∠ABC=90°,

FDAB,

EGBC,

∴四邊形BDEG是矩形,

AE平分∠BAC、CE平分∠ACB

ED=EH=EG,∠DAE=HAE,

∴四邊形BDEG是正方形,

在△DAE和△HAE中,

,

∴△DAE≌△HAESAS),

AD=AH

同理△CGE≌△CHE,

CG=CH

設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x

AC==10,

6-x+8-x=10,

解得:x=2,

BD=DE=2AD=4,

DFBC

∴△ADF∽△ABC,

,即,

解得:DF=,

EF=DF-DE=-2=

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四張背面完全相同的紙牌的正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻后摸出一張,不放回,再摸出一張

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);

(2)求摸出的兩張紙牌牌面上所畫幾何圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為對(duì)稱中心,把點(diǎn)A(3,4)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為(

A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊BCAB的長(zhǎng)分別為45,把它的左上角如圖所示折疊.點(diǎn)A恰好落在CD邊上的點(diǎn)F處,折痕為BE,則DE的長(zhǎng)為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年(1)班的體育課上,小明、小強(qiáng)和小華三人在學(xué)習(xí)訓(xùn)練足球,足球從一人傳到另一人就記為踢一次.

(1)如果從小強(qiáng)開始踢,經(jīng)過兩次踢球后,足球踢到了小明處的概率是多少?請(qǐng)用數(shù)狀圖或列表法說明.

(2)如果踢三次,球踢到了小明處的可能性最小,應(yīng)從誰開始踢?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,⊙O的半徑,弦ABCD交于點(diǎn)E,C的中點(diǎn),過D點(diǎn)的直線交AB延長(zhǎng)線與點(diǎn)F,且DF=EF

1)如圖①,試判斷DF與⊙O的位置關(guān)系,并說明理由;

2)如圖②,連接AC,若ACDF,BE=AE,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DE、F分別是ABAC、BC的中點(diǎn).當(dāng)△ABC滿足____條件時(shí),四邊形DAEF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,4).

(1)求直線BC與拋物線的解析式;

(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,當(dāng) MN的值最大時(shí),求△BMN的周長(zhǎng).

(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=4S2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小李8時(shí)騎自行車從家里出發(fā),到野外郊游,16時(shí)回到家里.他離家的距離s(千米)與時(shí)間t(時(shí))之間的關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:

①小李到達(dá)離家最遠(yuǎn)的地方是14時(shí);

②小李第一次休息時(shí)間是10時(shí);

11時(shí)到12時(shí),小李騎了5千米;

④返回時(shí),小李的平均速度是10千米/時(shí).

其中,正確的有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案