【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC與∠ACB的平分線相較于點(diǎn)E,過點(diǎn)E作EF∥BC交AC于點(diǎn)F,則EF的長(zhǎng)為________.
【答案】
【解析】
延長(zhǎng)FE交AB于點(diǎn)D,作EG⊥BC、作EH⊥AC,由EF∥BC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠DAE=∠HAE,從而知四邊形BDEG是正方形,再證△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,由AC=10可得x=2,即BD=DE=2、AD=4,再證△ADF∽△ABC可得DF=,據(jù)此得出EF=DF-DE=.
如圖,延長(zhǎng)FE交AB于點(diǎn)D,作EG⊥BC于點(diǎn)G,作EH⊥AC于點(diǎn)H,
∵EF∥BC、∠ABC=90°,
∴FD⊥AB,
∵EG⊥BC,
∴四邊形BDEG是矩形,
∵AE平分∠BAC、CE平分∠ACB,
∴ED=EH=EG,∠DAE=∠HAE,
∴四邊形BDEG是正方形,
在△DAE和△HAE中,
∵,
∴△DAE≌△HAE(SAS),
∴AD=AH,
同理△CGE≌△CHE,
∴CG=CH,
設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,
∵AC==10,
∴6-x+8-x=10,
解得:x=2,
∴BD=DE=2,AD=4,
∵DF∥BC,
∴△ADF∽△ABC,
∴,即,
解得:DF=,
則EF=DF-DE=-2=,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四張背面完全相同的紙牌的正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻后摸出一張,不放回,再摸出一張
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);
(2)求摸出的兩張紙牌牌面上所畫幾何圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為對(duì)稱中心,把點(diǎn)A(3,4)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為()
A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊BC和AB的長(zhǎng)分別為4和5,把它的左上角如圖所示折疊.點(diǎn)A恰好落在CD邊上的點(diǎn)F處,折痕為BE,則DE的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年(1)班的體育課上,小明、小強(qiáng)和小華三人在學(xué)習(xí)訓(xùn)練足球,足球從一人傳到另一人就記為踢一次.
(1)如果從小強(qiáng)開始踢,經(jīng)過兩次踢球后,足球踢到了小明處的概率是多少?請(qǐng)用數(shù)狀圖或列表法說明.
(2)如果踢三次,球踢到了小明處的可能性最小,應(yīng)從誰開始踢?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,⊙O的半徑,弦AB,CD交于點(diǎn)E,C為的中點(diǎn),過D點(diǎn)的直線交AB延長(zhǎng)線與點(diǎn)F,且DF=EF.
(1)如圖①,試判斷DF與⊙O的位置關(guān)系,并說明理由;
(2)如圖②,連接AC,若AC∥DF,BE=AE,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E、F分別是AB、AC、BC的中點(diǎn).當(dāng)△ABC滿足____條件時(shí),四邊形DAEF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,4).
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,當(dāng) MN的值最大時(shí),求△BMN的周長(zhǎng).
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=4S2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小李8時(shí)騎自行車從家里出發(fā),到野外郊游,16時(shí)回到家里.他離家的距離s(千米)與時(shí)間t(時(shí))之間的關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:
①小李到達(dá)離家最遠(yuǎn)的地方是14時(shí);
②小李第一次休息時(shí)間是10時(shí);
③11時(shí)到12時(shí),小李騎了5千米;
④返回時(shí),小李的平均速度是10千米/時(shí).
其中,正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com