【題目】如圖:在一個邊長為1的小正方形組成的方格稿紙上,有A、BC、D、E、F、G七個點(diǎn),則在下列任選三個點(diǎn)的方案中可以構(gòu)成直角三角形的是(  )

A.點(diǎn)A、點(diǎn)B、點(diǎn)CB.點(diǎn)A、點(diǎn)D、點(diǎn)G

C.點(diǎn)B、點(diǎn)E、點(diǎn)FD.點(diǎn)B、點(diǎn)G、點(diǎn)E

【答案】C

【解析】

先利用勾股定理求出各邊的長,再利用勾股定理的逆定理:如果三邊滿足,則可組成直角三角形進(jìn)行判斷即可.

AAB2=1+36=37,AC2=16+25=41,BC2=1+9=10,37+1041,不可以構(gòu)成直角三角形;

BAD2=16+16=32,AG2=9+36=45,DG2=1+4=532+545,不可以構(gòu)成直角三角形;

CBE2=36+16=52,BF2=25+25=50EF2=1+1=2,50+2=52,可以構(gòu)成直角三角形

DBG2=25+9=34,BE2=36+16=52GE2=9+1=10,34+1052,不可以構(gòu)成直角三角形.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,點(diǎn)E△ABC內(nèi)切圓的圓心,連接AE的延長線交BC于點(diǎn)F,交⊙O于點(diǎn)D;連接BD,過點(diǎn)D作直線DM,使∠BDM=∠DAC.

(1)求證:直線DM⊙O的切線;

(2)若DF=2,且AF=4,求BDDE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=-1,且經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸的另一個交點(diǎn)為B.

(1)若直線y=mx+n經(jīng)過B,C兩點(diǎn),求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=-1 上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點(diǎn)都在格點(diǎn)上,且直線m、n互相垂直.

(1)畫出△ABC關(guān)于直線n的對稱圖形△A′B′C′;

(2)直線m上存在一點(diǎn)P,使△APB的周長最小;

在直線m上作出該點(diǎn)P;(保留畫圖痕跡)

②△APB的周長的最小值為   .(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為4,-1).

1請以y軸為對稱軸畫出與△ABC對稱的△A1B1C1,并直接寫出點(diǎn)A1、B1C1的坐標(biāo);

2ABC的面積是

3點(diǎn)Pa+1,b-1與點(diǎn)C關(guān)于x軸對稱,a= b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AB=3BC=4,AC=5,在直線BC上有P點(diǎn),使PAC是以AC為腰的等腰三角形,則BP的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,圖形的運(yùn)動只改變圖形的位置,不改變圖形的形狀、大小,運(yùn)動前后的兩個圖形全等,翻折就是這樣.如圖1,將ABC沿AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)C'處,則ADC≌△ADC'

嘗試解決:(1)如圖2ABC中,∠C=90°AC=6,BC=8,將ABC沿AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)C'處,求CD的長.

2)如圖3,在長方形ABCD中,AB=8AD=6,點(diǎn)P在邊AD上,連接BP,將ABP沿BP翻折,使點(diǎn)A落在點(diǎn)E處,PE、BE分別與CD交于點(diǎn)G、F,且DG=EG

①求證:PE=DF;

②求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCDADBC,ANCM

(1)求證:BNDM;

(2)BC3,CD2,∠B50°,求∠BCD、∠D的度數(shù)及四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)、、,請回答如下問題:

1)在坐標(biāo)系內(nèi)描出點(diǎn)的位置:

2)求出以三點(diǎn)為頂點(diǎn)的三角形的面積;

3)在軸上是否存在點(diǎn),使以三點(diǎn)為頂點(diǎn)的三角形的面積為10,若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案