【題目】要使得△ABC是等腰三角形,則需要滿足下列條件中的( 。
A. ∠A=50°,∠B=60° B. ∠A=50°,∠B=100° C. ∠A+∠B=90° D. ∠A+∠B=90°
【答案】D
【解析】
根據(jù)三角形的內(nèi)角和是180°結(jié)合選項(xiàng)中的條件能夠證得有兩個(gè)角相等即為等腰三角形.
解:A、∵∠A=50°,∠B=60°,
∴∠C=180°-∠A-∠B=70°,
所以∠A≠∠B≠∠C,
所以△ABC不是等腰三角形;
B、∵∠A=50°,∠B=100°,
∴∠C=180°-∠A-∠B=30°,
所以∠A≠∠B≠∠C,
所以△ABC不是等腰三角形;
C、∠A+∠B=90°不能判定△ABC是等腰三角形;
D、∠A+∠B=90°,
則2∠A+∠B=180°,
∵∠A+∠B+∠C=180°,
∴∠A=∠C,
所以△ABC是等腰三角形.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將含30°角的直角三角尺ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( )
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店第一次用600元購(gòu)進(jìn)2B鉛筆若干支,第二次又用600元購(gòu)進(jìn)該款鉛筆,但這次每支的進(jìn)價(jià)是第一次進(jìn)價(jià)的倍,購(gòu)進(jìn)數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進(jìn)價(jià)是多少元?
(2)若要求這兩次購(gòu)進(jìn)的鉛筆按同一價(jià)格全部銷售完畢后獲利不低于420元,問每支售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個(gè)動(dòng)點(diǎn),且滿足BE=CF,設(shè)AE,BF交于點(diǎn)G,連接DG,則DG的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點(diǎn)D,過點(diǎn)D作∠ABD=∠ADE,交AC于點(diǎn)E.
(1)求證:DE為⊙O的切線.
(2)若⊙O的半徑為,AD=,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,點(diǎn)E是對(duì)角線AC上一點(diǎn),連接DE,過點(diǎn)E作EF⊥ED,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點(diǎn)N,若點(diǎn)F是AB的中點(diǎn),則△EMN的周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,在中,和的平分線交于點(diǎn)E,過點(diǎn)E作交AB于點(diǎn)M,交AC于點(diǎn)N,若,則線段MN的長(zhǎng)為________.
(2)如圖所示,已知,和的平分線相交于點(diǎn)O,,,則 的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)B的坐標(biāo)為(10,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn),當(dāng)△POA為等腰三角形時(shí),點(diǎn)P的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子1張或椅子4把,現(xiàn)計(jì)劃用120塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗),設(shè)用x塊板材做桌子,用y塊板材做椅子,則下列方程組正確的是( 。
A.B.
C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com