(2002•海淀區(qū))用換元法解方程:x2-2x-=0,若設(shè)=y,則原方程可化為   
【答案】分析:此方程可用換元法解方程,設(shè)=y,則x2-2x+6=y2,則x2-2x=y2-6,代入即可求解方程.
解答:解:設(shè)=y,則方程化為y2-y-6=0.
故本題答案為:y2-y-6=0.
點(diǎn)評(píng):在解無理方程時(shí)最常用的方法是換元法,一般方法是通過觀察確定用來換元的式子,如本題中設(shè)=y,需要注意的是用來換元的式子為設(shè),則y2-y-6=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點(diǎn)C,且與x軸的正半軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).若A、B兩點(diǎn)的橫坐標(biāo)為整數(shù),
(1)確定這個(gè)二次函數(shù)的解析式并求它的頂點(diǎn)坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)是(0,6),點(diǎn)P(t,0)是線段AB上的一個(gè)動(dòng)點(diǎn),它可與點(diǎn)A重合,但不與點(diǎn)B重合.設(shè)四邊形PBCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點(diǎn)P與點(diǎn)A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長(zhǎng).再利用“等底等高的三角形面積相等”的知識(shí),畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計(jì)算和證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(diǎn)(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點(diǎn)C,且與x軸的正半軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)).若A、B兩點(diǎn)的橫坐標(biāo)為整數(shù),
(1)確定這個(gè)二次函數(shù)的解析式并求它的頂點(diǎn)坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)是(0,6),點(diǎn)P(t,0)是線段AB上的一個(gè)動(dòng)點(diǎn),它可與點(diǎn)A重合,但不與點(diǎn)B重合.設(shè)四邊形PBCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點(diǎn)P與點(diǎn)A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長(zhǎng).再利用“等底等高的三角形面積相等”的知識(shí),畫一個(gè)三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計(jì)算和證明過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(diǎn)(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•海淀區(qū))如圖,在菱形ABCD中,AE⊥BC于E點(diǎn),EC=1,sinB=,求四邊形AECD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案