【題目】若等腰三角形的周長為26,一邊為11,則腰長為( ).

A. 11B. 7.5C. 117.5D. 以上都不對

【答案】C

【解析】

已知的邊長11可能是腰也可能是底,所以分兩種情況討論,一種是11為腰,則另一腰長也為11,再根據(jù)周長為26即可得出三邊長度,再用三角形三邊關系驗證能否組成三角形即可;另一種是11為底,則可求出兩腰長得和,就可以求出腰長,得出三邊長度,再用三角形三邊關系驗證能否組成三角形即可.

解:由題可知等腰三角形一邊長為11,分以下兩種情況:

①若11為腰,則另一腰長也為11,第三邊長為;

所以等腰三角形三邊長為11,11,4,可以構成三角形;

②若11為底,則兩腰長為

所以等腰三角形三邊長為7.5,7.5,11,可以構成三角形;

綜上所述,此等腰三角形的腰長為117.5;

故答案選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(k0)的圖象經(jīng)過點A(﹣2,m),過點AABx軸于點B,且△AOB的面積為4.

(Ⅰ)求km的值;

(Ⅱ)設C(x,y)是該反比例函數(shù)圖象上一點,當1x4時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為,則AK=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A40)、B3,4),C02).

1)求;(求四邊形ABCO的面積)

2)在x軸上是否存在一點,使,(三角形APB的面積),若存在,請直接寫出點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀題:甲同學解方程,如下:

甲:第一步

第二步

第三步

第四步

第五步

1)他的解法第______步開始出現(xiàn)錯誤

2)請把正確的解題過程寫在右側橫線上,并在括號內(nèi)填上對應步驟的理論依據(jù).

正確解法:

去分母:__________________(___________________)

去括號:___________________

移項:__________________________

合并同類項:_______________________________

系數(shù)化1_________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,ABC的頂點均在格點上C的坐標為4,-1).

1請以y軸為對稱軸畫出與△ABC對稱的△A1B1C1,并直接寫出點A1、B1、C1的坐標;

2ABC的面積是

3Pa+1b-1與點C關于x軸對稱,a= b=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,過頂點A的直線DEBC,∠ABC、∠ACB的平分線分別交DE于點E、D,若AC=3,AB=4,則DE的長為( 。

A. 1B. 3C. 4D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=56°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(EBC上,FAC)折疊,點C與點O恰好重合,則∠OEC______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線交于O點,點E,F分別是AO,CO的中點,連接BE,BF,DE,DF,則下列結論中一定成立的是________.(把所有正確結論的序號都填在橫線上)

BF=DE;②∠ABO=2ABE;SAED=SACD;④四邊形BFDE是菱形.

查看答案和解析>>

同步練習冊答案