【題目】某校為了對甲,乙兩名同學(xué)進行學(xué)生會主席的競選考核、召開了一次競選答辯及民主測評會.由A,B,C,D,E五位教師評委對競選答辯進行評分,并選出20名學(xué)生代表參加民主投票.競選答辯的結(jié)果如下表所示:
評委 得分 選手 | A | B | C | D | E |
甲 | 92 | 88 | 90 | 94 | 96 |
乙 | 84 | 86 | 90 | 93 | 91 |
民主投票的結(jié)果為:甲8票,乙12票.
根據(jù)以上信息解答下列問題:
(1)甲,乙兩人的競選答辯得分分別是多少?
(2)如果綜合得分=競選答辯得分+民主投票得分,那么,甲,乙兩人誰當(dāng)選學(xué)生會主席?
(3)如果綜合得分=競選答辯得分民主投票得分,那么,當(dāng)時,甲,乙兩人誰當(dāng)選學(xué)生會主席?
【答案】(1)甲:92,乙:89;(2)乙當(dāng)選學(xué)生會主席;(3)甲當(dāng)選學(xué)生會主席.
【解析】
(1)根據(jù)算術(shù)平均數(shù)的計算公式計算;
(2)根據(jù)綜合得分=競選答辯得分+民主投票得分計算;
(3)根據(jù)綜合得分=競選答辯得分×a+民主投票得分×(1a)計算即可.
解:(1)甲的競選答辯得分:(分),
乙的競選答辯得分:(分);
(2)甲的綜合得分:(分),
乙的綜合得分:(分)
∵,
∴乙當(dāng)選學(xué)生會主席;
(3)甲的綜合得分:(分),
乙的綜合得分:(分),
∵,
∴甲當(dāng)選學(xué)生會主席.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標系中,點A(0,1),B(0,5),C(5,0),且點P在第一象限運動,且∠APB=45°,則PC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙上每個小正方形的邊長均為1個單位長度,點A、B都在格點上(兩條網(wǎng)格線的交點叫格點).
(1)將線段AB向上平移兩個單位長度,點A的對應(yīng)點為點A1,點B的對應(yīng)點為點B1,請畫出平移后的線段A1B1;
(2)將線段A1B1繞點A1按逆時針方向旋轉(zhuǎn)90°,點B1的對應(yīng)點為點B2,請畫出旋轉(zhuǎn)后的線段A1B2;
(3)連接AB2、BB2,求△ABB2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A'B'C,M是BC的中點,P是A'B'的中點,連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣x2+bx+c的圖象與直線y=﹣x+1相交于A、B兩點(如圖),A點在y軸上,過點B作BC⊥x軸,垂足為C(﹣3,0).
(1)填空:b=_____,c=_____.
(2)點N是二次函數(shù)圖象上一點(點N在AB上方),過N作NP⊥x軸,垂足為點P,交AB于點M,求MN的最大值;
(3)在(2)的條件下,點N在何位置時,BM與NC相互垂直平分?并求出所有滿足條件的N點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為⊙O外一點,PA、PB分別切⊙O于A、B,CD切⊙O于點E,分別交PA,PB于點C、D,若△PCD的周長為24,⊙O的半徑是5,則點P到圓心O的距離_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M,N是以AB為直徑的⊙O上的點,且弧AN=弧BN,BM平分∠ABD,MC⊥BD于點C.
(1)求證:MC是⊙O的切線.
(2)若BC=2,MC=4,求⊙O的直徑.
(3)在(2)的條件下,求陰影部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是圓上一動點,弦,是的平分線,.
(1)當(dāng)等于多少度時,四邊形有最大面積?最大面積是多少?
(2)當(dāng)的長為多少時,四邊形是梯形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com