【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),OA=1,OB=3,拋物線的頂點(diǎn)坐標(biāo)為D(1,4).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的表達(dá)式;
(3)過點(diǎn)D做直線DE//y軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上A、D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不于A、D兩點(diǎn)重合),PA、PB與直線DE分別交于點(diǎn)G、F,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG的值是否變化,如不變,試求出該值;若變化,請(qǐng)說明理由。
【答案】(1)(-1,0),(3,0);(2);(3)8.
【解析】
(1)根據(jù)OA,OB的長(zhǎng),可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(3)根據(jù)相似三角形的判定與性質(zhì),可得EG,EF的長(zhǎng),根據(jù)整式的加減,可得答案.
解:(1)由拋物線交軸于兩點(diǎn)(A在B的左側(cè)),且OA=1,OB=3,得A點(diǎn)坐標(biāo)(-1,0),B點(diǎn)坐標(biāo)(3,0);
(2)設(shè)拋物線的解析式為,
把C點(diǎn)坐標(biāo)代入函數(shù)解析式,得
解得,
拋物線的解析式為;
(3)EF+EG=8(或EF+EG是定值),理由如下:
過點(diǎn)P作PQ∥y軸交x軸于Q,如圖:
設(shè)P(t,-t2+2t+3),
則PQ=-t2+2t+3,AQ=1+t,QB=3-t,
∵PQ∥EF,
∴△BEF∽△BQP
∴
∴
又∵PQ∥EG,
∴△AEG∽△AQP,
∴
∴
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E邊BC上,連接AE,將△ABE沿著AE翻折到△AEF,連接CF、DF,若△CDF為等腰三角形,則△CDF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與O點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )
A. 球不會(huì)過網(wǎng) B. 球會(huì)過球網(wǎng)但不會(huì)出界
C. 球會(huì)過球網(wǎng)并會(huì)出界 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)黨和國(guó)家精準(zhǔn)扶貧戰(zhàn)略計(jì)劃,某公司在農(nóng)村租用了 720畝閑置土地種植了喬 木型、小喬木型和灌木型三種茶樹. 為達(dá)到最佳種植收益,要求種植喬木型茶樹的面積是小喬木型茶樹面積的2倍,灌木型茶樹的面積不得超過喬木型茶樹面積的倍,但種植喬木型茶樹的面積不得超過270畝. 到茶葉采摘季節(jié)時(shí),該公司聘請(qǐng)當(dāng)?shù)剞r(nóng)民進(jìn)行采摘,每人每天可以采摘0.4畝喬木型茶葉,或者采摘0.5畝小喬木型茶葉,或者采摘0.6畝灌木型茶葉. 若該公司聘請(qǐng)一批農(nóng)民恰好20天能采摘完所有茶葉,則種植喬木型茶樹的面積是________畝.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2+x﹣4與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,作直線AC.
(1)如圖1,點(diǎn)P是直線AC下方拋物線上的一點(diǎn),連結(jié)PA,PC.過點(diǎn)P作PD⊥AC于點(diǎn)D,交y軸于點(diǎn)M,E是射線PD上的一點(diǎn),Q是x軸上的一點(diǎn),F是y軸上的一點(diǎn),過F作該拋物線對(duì)稱軸的垂線段,垂足為點(diǎn)G,連結(jié)EF,GQ.當(dāng)△PAC面積最大時(shí),求點(diǎn)P的坐標(biāo),并求EF+GQ+(FG+QA)的最小值;
(2)如圖2,在(1)的條件下,將△CDM繞點(diǎn)D旋轉(zhuǎn)得到△C'DM',在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)C'或點(diǎn)M′落在y軸上(不與點(diǎn)M、C重合)時(shí),將△C'DM'沿射線PD平移得到△C″D'M″,在平移過程中,平面內(nèi)是否存在點(diǎn)N,使得四邊形OM″NC″是菱形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,E是CD的中點(diǎn),連接OE.過點(diǎn)C作CF∥BD交線段OE的延長(zhǎng)線于點(diǎn)F,連接DF.
求證:(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,3),點(diǎn)B的坐標(biāo)為(3,n).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)點(diǎn)P在線段AB上,且S△APO:S△BOP=1:3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,試在邊AB上確定點(diǎn)P的位置,使得以P、C、D為頂點(diǎn)的三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 隨機(jī)拋擲一枚均勻的硬幣,落地后反面一定朝上。
B. 從1,2,3,4,5中隨機(jī)取一個(gè)數(shù),取得奇數(shù)的可能性較大。
C. 某彩票中獎(jiǎng)率為,說明買100張彩票,有36張中獎(jiǎng)。
D. 打開電視,中央一套正在播放新聞聯(lián)播。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com