【題目】濱海長途汽車客運公司規(guī)定旅客可免費攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過規(guī)定時,需付的行李費y()是行李質(zhì)量x(kg)的一次函數(shù),已知行李質(zhì)量為20kg時需付行李費2元,行李質(zhì)量為50kg時需付行李費8.

(1)當(dāng)行李的質(zhì)量x超過規(guī)定時,求yx之間的函數(shù)表達(dá)式.

(2)求旅客最多可免費攜帶行李的質(zhì)量.

【答案】1y=x-2;(210kg

【解析】

1)根據(jù)(20,2)、(50,8)利用待定系數(shù)法,即可求出當(dāng)行李的質(zhì)量x超過規(guī)定時,yx之間的函數(shù)表達(dá)式;
2)令y=0,求出x值,此題得解.

解:(1)設(shè)yx的函數(shù)表達(dá)式為y=kx+b
將(20,2)、(50,8)代入y=kx+b中,得

解得: ,

∴當(dāng)行李的質(zhì)量x超過規(guī)定時,yx之間的函數(shù)表達(dá)式為y=x-2;

2)當(dāng)y=0時,即x-2=0,
解得:x=10
答:旅客最多可免費攜帶行李10kg

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC是邊長為8的等邊三角形,ADBC于點D,DEAB于點E.

1)求證:AE3EB

2)若點FAD的中點,點PBC邊上的動點,連接PE,PF,如圖2所示,求PEPF的最小值及此時BP的長;

3)在(2)的條件下,連接EF,當(dāng)PEPF取最小值時,PEF的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC12cmBC16cm,AB20cm,∠CAB的角平分線ADBC于點D

1)根據(jù)題意將圖形補(bǔ)畫完整(要求:尺規(guī)作圖保留作圖痕跡,不寫作法);

2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1過點A(8,0)、B(0,﹣5),直線l2過點C(0,﹣1),l1、l2相交于點D,且△DCB的面積等于8.

(1)求點D的坐標(biāo);

(2)點D的坐標(biāo)是哪個二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,O是△ABC的內(nèi)切圓,D、E、F是切點.

(1)求證:四邊形ODCE是正方形;

(2)如果AC=6,BC=8,求內(nèi)切圓⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.

下列判斷:

①當(dāng)x>0時,y1>y2;
當(dāng)x0時,x值越大,M值越。

使得M大于2x值不存在;
使得M=1x值是.其中正確的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考低于測試前,某區(qū)教育局為了了解選報引體向上的九年級男生的成績情況,隨機(jī)抽查了本區(qū)部分選報引體向上項目的九年級男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中的信息,解答下列問題:

Ⅰ)寫出扇形圖中a=  %,本次抽測中,成績?yōu)?/span>6個的學(xué)生有  名.

Ⅱ)求這次抽測中,測試成績的平均數(shù),眾數(shù)和中位數(shù);

Ⅲ)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個以上(含6個)得滿分,請你估計該區(qū)體育中考選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(M,A,E三點在同一條直線上),測得電線桿頂端D的仰角∠a=20°.

(1)求背水坡AB的坡角;

(2)求電線桿CD的高度.(結(jié)果精確到個位,參考數(shù)據(jù)sin20°0.3,cos20°0.9,tan20°0.4,1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABCA=m°,ABC和∠ACD的平分線交于點A1,得∠A1A1BC和∠A1CD的平分線交于點A2,得∠A2A2 017BC和∠A2 017CD的平分線交于點A2 018,則∠A2 018_____度.

查看答案和解析>>

同步練習(xí)冊答案