閱讀下面的例題:

  解方程x2-2=0.

  解:(1)當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得x1=2,x2=-1(不合題意,舍去).

  (2)當(dāng)x<0時(shí),原方程化為x2+x-2=0,解得x1=-2,x2=1(不合題意,舍去).

  所以原方程的根是x1=2,x2=-2.

請(qǐng)參照例題,解方程x2-1=0.

 (1)x1=1,x2=-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面的例題:
解方程:x2-
x2
-2=0.
解:(1)當(dāng)x≥0時(shí),
x2
=x

原方程化為  x2-x-2=0,
解得 x=2或x=-1(不合題意,舍去).
(2)當(dāng)x<0時(shí),-x>0,
x2
=
(-x)2
=-x
,
原方程化為 x2+x-2=0,
解得 x=1(不合題意,舍去)或x=-2.
綜合(1)(2)可得原方程的根是:x1=2,x2=-2.
請(qǐng)參照例題解方程:x2-
(x-2)2
-2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面的例題:分解因式x2+2x-1;
解:令x2+2x-1=0,得到一個(gè)關(guān)于x的一元二次方程.
∵a=1,b=2,c=-1
x=
-b±
b2-4ac
2a
=
-2±2
2
2
=-1±
2

解得:x1=-1+
2
x2=-1-
2

∴x2+2x-1=(x-x1)(x-x2
=[x-(-1+
2
)][x-(-1-
2
)]

=(x+1-
2
)(x+1+
2
)

這種分解因式的方法叫做求根法,請(qǐng)你利用這種方法分解因式:x2-3x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、閱讀下面的例題:解方程x2-|x|-2=0
解:(1)當(dāng)x≥0時(shí),原方程化為x2-|x|-2=0,解得:x1=2,x2=-1(不合題意,舍去).
(2)當(dāng)x<0時(shí),原方程化為x2+x-2=0,解得:x1=1(不合題意,舍去),x2=-2.
∴原方程的根是x1=2,x2=-2.
請(qǐng)參照例題解方程x2-|x-3|+1=0,則此方程的根是
1或-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面的例題:
請(qǐng)參照例題解方程:x2-6x-|x-3|+3=0
解方程:x2+|x|-2=0.
解:原方程可化為:|x|2+|x|-2=0
即:(|x|+2)(|x|-1)=0.
∵|x|+2>0
∴|x|-1=0
∴x1=1,x2=-1
∴原方程的根是x1=1,x2=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

閱讀下面的例題,解方程(x-1)2-5|x-1|-6=0,解方程x2-|x|-2=0;
解:原方程化為|x|2-|x|-2=0.令y=|x|,原方程化成y2-y-2=0
解得:y1=2y2=-1
當(dāng)|x|=2,x=±2;當(dāng)|x|=-1時(shí)(不合題意,舍去)
∴原方程的解是x1=2,x2=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案