【題目】兩個大小不同的等腰直角三角形三角板如圖 1 所示放置,圖 2 是由它抽像出的幾何圖形,B, C, E在同一 條直線上,連結(jié)DC.
(1)請找出圖 2 中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字 母);
(2)證明:DC ⊥ BE.
【答案】(1)△BAE≌CAD,證明見解析;(2)見解析.
【解析】
(1)根據(jù)△ABC和△AED為等腰直角三角形,可知AB=AC,AD=AE,∠BAE=∠CAD,從而可證△BAE≌CAD;
(2)由(1)可知∠AEB=∠ADC,根據(jù)∠AOD=∠COE和三角形內(nèi)角和定理即可得知∠DAE=∠ECD=90°,從而得出答案.
解:(1)圖 2 中△BAE≌CAD,理由如下:
∵△ABC和△AED為等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=90°
∴∠BAC+∠CAE=∠EAD+∠CAE
即∠BAE=∠CAD
在△BAE和△CAD中
∴△BAE≌CAD(SAS)
(2)由(1)可知△BAE≌CAD,
∴∠AEB=∠ADC,
在△AOD與△COE中,∠AEB=∠ADC,∠AOD=∠COE
∴∠DAE=∠ECD=90°
∴DC⊥BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在運動會徑賽中,甲、乙同時起跑,剛跑出200m,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,若他們所跑的路程y(m)與比賽時間x(s)的關(guān)系如圖,有下列說法:①他們進行的是800m比賽;②乙全程的平均速度為6.4m/s;③甲摔倒之前,乙的速度快;④甲再次投入比賽后的平均速度為7.5m/s;⑤甲再次投入比賽后在距離終點300米時追上了乙.其中正確的個數(shù)有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“金山”超市現(xiàn)有甲、乙兩種糖果若干kg,兩種糖果的售價和進價如表
糖果 | 甲種 | 乙種 |
售價 | 36元/kg | 20元/kg |
進價 | 30元/kg | 16元/kg |
(1)超市準備用甲、乙兩種糖果混合成雜拌糖出售,混合后糖果的售價是27.2元/kg,現(xiàn)要配制這種雜拌糖果100/kg,需要甲、乙兩種糖果各多少千克?
(2)“六一”兒童節(jié)前夕,超市準備用5000元購進甲、乙兩種糖果共200kg,如何進貨才能使這批糖果獲得最大利潤,最大利潤是多少?(注:進貨量只能為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,直線y=﹣x+b分別交x,y軸的正半軸于點A,B,交反比例函數(shù)y=﹣的圖象于點C,D(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記四邊形OBCE的面積為S1,△OBD的面積為S2,若,則CD的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=10,CD=15,E是邊CD上一點,且DE=5,P是射線AD上一動點,過A,P,E三點的⊙O交直線AB于點F,連結(jié)PE,EF,PF,設(shè)AP=m.
(1)當(dāng)m=6時,求AF的長.
(2)在點P的整個運動過程中.
①tan∠PFE的值是否改變?若不變,求出它的值;若改變,求出它的變化范圍.
②當(dāng)矩形ABCD恰好有2個頂點落在⊙O上時,求m的值.
(3)若點A,H關(guān)于點O成中心對稱,連結(jié)EH,CH.當(dāng)△CEH是等腰三角形時,求出所有符合條件的m的值.(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列六個命題:①相等的角是對頂角;②兩直線平行,同位角相等;③若一個三角形的兩個內(nèi)角分別為和,則這個三角形是直角三角形;④全等三角形的對應(yīng)角相等。其中逆命題是假命題的個數(shù)有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(點在點的左側(cè)),經(jīng)過點的直線與軸交于點,與拋物線的另一個交點為,且.
直接寫出點的坐標(biāo),并求直線的函數(shù)表達式(其中,用含的式子表示);
點是直線上方的拋物線上的一點,若的面積的最大值為,求的值;
設(shè)是拋物線對稱軸上的一點,點在拋物線上,以點,,,為頂點的四邊形能否成為矩形?若能,求出點的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小格的邊長均為,的頂點都在格點上,建立平面直角坐標(biāo)系.
點的坐標(biāo)是________,點的坐標(biāo)是________;
以原點為位似中心,將縮小,使變換后的到的與對應(yīng)邊的比為請在網(wǎng)格中畫出,并寫出的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com