【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(P為AB中點)所在的直線上,得到經過點D的折痕DE.則∠DEC的大小為( )
A.78°
B.75°
C.60°
D.45°
【答案】B
【解析】解:連接BD, ∵四邊形ABCD為菱形,∠A=60°,
∴△ABD為等邊三角形,∠ADC=120°,∠C=60°,
∵P為AB的中點,
∴DP為∠ADB的平分線,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折疊的性質得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.
故選:B.
連接BD,由菱形的性質及∠A=60°,得到三角形ABD為等邊三角形,P為AB的中點,利用三線合一得到DP為角平分線,得到∠ADP=30°,∠ADC=120°,∠C=60°,進而求出∠PDC=90°,由折疊的性質得到∠CDE=∠PDE=45°,利用三角形的內角和定理即可求出所求角的度數.
科目:初中數學 來源: 題型:
【題目】如圖,在一張長為8cm,寬為6cm的矩形紙片上,現要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上).則剪下的等腰三角形的面積為______cm2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形的長和寬分別是7cm和3cm,分別繞著它的長和寬所在的直線旋轉一周,回答下列問題:
(1)如圖(1),繞著它的寬所在的直線旋轉一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π取3.14)
(2)如圖(2),繞著它的長所在的直線旋轉一周,所得到的是什么樣的幾何體?得到的幾何體的體積是多少?(π取3.14)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB分別切⊙O于A、B兩點,點C在優(yōu)弧 上,∠P=80°,則∠C的度數為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標系,點B的坐標為(2,0),若拋物線y= x2+k與扇形OAB的邊界總有兩個公共點,則實數k的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】分別以□ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當三個等腰直角三角形都在該平行四邊形外部時,連接GF,EF.請判斷GF與EF的關系(只寫結論,不需證明);
(2)如圖2,當三個等腰直角三角形都在該平行四邊形內部時,連接GF,EF,(1)中結論還成立嗎?若成立,給出證明;若不成立,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市盤山、黃崖關長城、航母公園三景區(qū)是人們節(jié)假日游玩的熱點景區(qū).某中學對七年級(1)班學生今年暑假到這三景區(qū)游玩的計劃做了全面調查,調查分四個類別,A游三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩.根據調查的結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖(如圖①、圖②)如下,請根據圖中所給的信息,解答下列問題:
(1)求七年級(1)班學生人數;
(2)將條形統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中表示“B類別”的圓心角的度數;
(4)若該中學七年級有學生520人,求計劃暑假選擇A、B、C三個類別出去游玩的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀后回答問題:
計算(-)÷(-15)×(-)
解:原式=-÷[(-15)×(-)] ①
=-÷1 ②
=- ③
()上述的解法是否正確?答:_________________________
若有錯誤,在哪一步?答:_________________________(填代號)
錯誤的原因是:___________________________________
(2)這個計算題的正確答案應該是:______________________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com