如圖,雙曲線y=
kx
(x>0)上有一點A(1,5),過點A的直線y=mx+n與x軸交于點C(6,0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)根據(jù)圖象直接寫出在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時x的取值范圍.
分析:(1)把A的代入反比例函數(shù)的解析式即可求出反比例函數(shù)的解析式,把A、C的坐標(biāo)代入y=mx+n即可求出一次函數(shù)的解析式;
(2)求出B的坐標(biāo),根據(jù)三角形的面積公式求出即可;
(3)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.
解答:解:(1)把A(1,5)代入y=
k
x
得:=5,
∴反比例函數(shù)的解析式是y=
5
x
,
把A、C的坐標(biāo)代入y=mx+n得:
m+n=5
6m+n=0
,
解得:m=-1,n=6,
∴一次函數(shù)的解析式是y=-x+6;

(2)解方程組
y=
5
x
y=-x+6
得:
x1=1
y1=5
x2=5
y2=1

∵A(1,5),
∴B(5,1),
∵C(6,0),
∴OC=6,
∴S△AOB=S△AOC-S△BCO=
1
2
×6×5-
1
2
×6×1=12;

(3)在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時x的取值范圍是0<x<1或x>6.
點評:本題考查了一次函數(shù)和反比例函數(shù)的交點問題,用待定系數(shù)法求出反比例函數(shù)和一次函數(shù)的解析式等知識點的應(yīng)用,主要考查學(xué)生的計算能力和觀察圖形的能力,用了數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,雙曲線y=
kx
(x>0)
與直線y=mx+n在第一象限內(nèi)交于點A(1,5)和B(5,1),根據(jù)圖象,在第一象限內(nèi),反比例函數(shù)值大于一次函數(shù)值時x的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•揚州)如圖,雙曲線y=
kx
經(jīng)過Rt△OMN斜邊上的點A,與直角邊MN相交于點B,已知OA=2AN,△OAB的面積為5,則k的值是
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•深圳)如圖,雙曲線y=
kx
(k>0)與⊙O在第一象限內(nèi)交于P、Q兩點,分別過P、Q兩點向x軸和y軸作垂線.已知點P坐標(biāo)為(1,3),則圖中陰影部分的面積為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,雙曲線y=
kx
交矩形OABC的邊分別于點D、E,若BD=2AD,且四邊形ODBE的面積為8,則k=
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,雙曲線y=
k
x
經(jīng)過Rt△OMN斜邊上的點A,與直角邊MN交于點B,已知OA=2AN,△OAB的面積為
5
2
,則k的值是( 。

查看答案和解析>>

同步練習(xí)冊答案