如圖,AB是⊙O的直徑,AC是⊙O的弦,AE交⊙O于點E,且AE⊥CP于點D,且AC平分∠DAB.
(1)求證:直線CP與⊙O相切.
(2)若AB=10,∠CAB=30°,求CD的長.
(1)證明:連接OC;
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OCA,
∴OCAD;
又∵∠OAC=∠DAC,
又∵AD⊥CP,
∴OC⊥CP,
∴直線CP與⊙O相切.

(2)連接BC.
∵AB是⊙O的直徑,
∴∠ACB=90°
∵AB=10,∠CAB=30°,
∴BC=10÷2=5
∴AC=
AB2-BC2
=
102-52
=5
3

又∵∠1=∠2=30°,AE⊥CP于點D,
∴CD=5
3
×
1
2
=
5
2
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(教材變式題)如圖所示,在△ABC中,AB=6,AC=8,∠BAC=60°,以BC邊上一點作⊙O分別與AB,AC邊相切,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O直徑,BC切⊙O于B,CO交⊙O交于D,AD的延長線交BC于E,若∠C=20°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,圓上有B,C兩點,PB,PC為圓的兩切線.若
BC
將圓分成兩弧,且其中一弧的長為圓周長的
1
10
,則∠BPC的度數(shù)為( 。
A.108B.120C.144D.162

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,CD平分∠ACB,CB⊥AB于B,O點在AC上,圓O過D點,求證:AB與圓O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,P是⊙O外一點,PC切⊙O于點C,割線PO交⊙O于點B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點M在⊙O的下半圈上運動(不與A、B重合),求當(dāng)△ABM的面積最大時,AC•AM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC的中點D在⊙O上,DE⊥BC于E.
(1)求證:DE是⊙O的切線;
(2)若CE=3,∠A=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖△ABC中,AB=AC,EFBC,且⊙O內(nèi)切于四邊形BCFE.
(1)當(dāng)
AE
BE
=
1
2
時,sinB=______;
(2)當(dāng)
AE
BE
=
1
n
時,sinB等于多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知點A(0,2),⊙A的半徑是2,⊙P的半徑是1,滿足與⊙A及x軸都相切的⊙P有______個.

查看答案和解析>>

同步練習(xí)冊答案