【題目】如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點D作DE垂直O(jiān)A的延長線交于點E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時,△OAB與△EDA全等?請說明理由,并求出此時點C到OE的距離.
【答案】
(1)證明:如圖所示,
∵OA⊥OB,
∴∠1+∠2=90°,
又∵四邊形ABCD是矩形,
∴∠BAD=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
∵OA⊥OB,OE⊥OA,
∴∠BOA=∠DEA=90°,
∴△OAB∽△EDA.
(2)解:在Rt△OAB中,AB= =5,
由(1)可知∠1=∠3,∠BOA=∠DEA=90°,
∴當(dāng)a=AD=AB=5時,△AOB與△EDA全等.
當(dāng)a=AD=AB=5時,可知矩形ABCD為正方形,
∴BC=AB,如圖,過點C作CH⊥OE交OE于點H,
則CH就是點C到OE的距離,過點B作BF⊥CH交CH于點F,
則∠4與∠5互余,∠1與∠5互余,
∴∠1=∠4,
又∵∠BFC=∠BOA,BC=AB,
∴△OAB≌△FCB(AAS),
∴CF=OA=4,BO=BF.
∴四邊形OHFB為正方形,
∴HF=OB=3,
∴點C到OE的距離CH=CF+HF=4+3=7.
【解析】(1)由于四邊形ABCD是矩形,則∠BAD=90°,那么∠OBA、∠DAE同為∠BAO的余角,即∠OBA=∠DAE,而∠BOA、∠DEA都是直角,由此可證得△OAB∽△EDA.(2)若△OAB與△EDA全等,則AB=AD,在Rt△OAB中,利用勾股定理易求得AB=5,那么a=AD=AB=5; 求C到OE的距離,可過C作CH⊥OE于H,過B作BF⊥CH于F;那么CH就是所求的距離,通過上面的解題思路,易證得△CBF≌△ABO,得CH=OA=4,BO=BF,那么四邊形BOHF是正方形,由此可得FH=BO=3,根據(jù)CH=CF+FH即可求得C到OE的距離.
【考點精析】通過靈活運用矩形的性質(zhì)和相似三角形的判定,掌握矩形的四個角都是直角,矩形的對角線相等;相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:(x-2)-(4x-1)=4.
【答案】x=-.
【解析】
方程兩邊都乘以6去分母后,去括號,移項合并,將x系數(shù)化為1即可求出解.
去分母得:3(x-2)-2(4x-1)=24,
去括號得:3x-6-8x+2=24,
移項合并得:-5x=28,
解得:x=-.
【點睛】
此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,將x系數(shù)化為1,求出解.
【題型】解答題
【結(jié)束】
22
【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;
(2)已知2x-y-4=0,求9x27y÷81y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)8﹣(﹣2)
(2)1﹣6+(﹣20)﹣(﹣5)
(3)﹣4×(﹣3)2+5×(﹣2)﹣6
(4)(1﹣+)×(﹣48)
(5)﹣22+[(﹣4)2﹣(1﹣3)×3]
(6)(﹣125)÷(﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:三角形一邊的中線與這邊上的高線之比稱為這邊上的中高比.
(1)直接寫出等腰直角三角形腰上的中高比為 .
(2)已知一個直角三角形一邊上的中高比為5:4,求它的最小內(nèi)角的正切值.
(3)如圖,已知函數(shù)y= (x+4)(x﹣m)與x軸交于A、B兩點,與y軸的負半軸交于點C,對稱軸與x的正半軸交于點D,若△ABC中AB邊上的中高比為5:4,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(1)班的宣傳委員在辦黑板報時,采用了下面的圖案作為邊框,其中每個黑色六邊形與6個白色六邊形相鄰.若一段邊框上有45個黑色六邊形,則這段邊框共有白色六邊形( 。
A. 182個 B. 180個 C. 272個 D. 270個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由4個正方體搭成的幾何體按如圖放置,若要求畫出它的三視圖,則在所畫的俯視圖中正方形共有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四個全等的直角三角形紙片既可以拼成(內(nèi)角不是直角)的菱形ABCD,也可以拼成正方形EFGH,則菱形ABCD面積和正方形EFGH面積之比為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE切⊙O于點E,AT交⊙O于點M,N,線段OE交AT于點C,OB⊥AT于點B,已知∠EAT=30°,AE=3 ,MN=2 .
(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點F在⊙O上( 是劣。,且EF=5,把△OBC經(jīng)過平移、旋轉(zhuǎn)和相似變換后,使它的兩個頂點分別與點E,F(xiàn)重合.在EF的同一側(cè),這樣的三角形共有多少個?你能在其中找出另一個頂點在⊙O上的三角形嗎?請在圖中畫出這個三角形,并求出這個三角形與△OBC的周長之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是切⊙O于A的切線,BC交⊙O于點D,E是劣弧 的中點,連接AE交BC于點F,若cosC= ,AC=6,則BF的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com