【題目】問題情景:數(shù)學(xué)課上,老師布置了這樣一道題目,如圖1,△ABC是等邊三角形,點(diǎn)D是BC的中點(diǎn),且滿足∠ADE=60°,DE交等邊三角形外角平分線于點(diǎn)E.試探究AD與DE的數(shù)量關(guān)系.
操作發(fā)現(xiàn):(1)小明同學(xué)過點(diǎn)D作DF∥AC交AB于F,通過構(gòu)造全等三角形經(jīng)過推理論證就可以解決問題,請您按照小明同學(xué)的方法確定AD與DE的數(shù)量關(guān)系,并進(jìn)行證明.
類比探究:(2)如圖2,當(dāng)點(diǎn)D是線段BC上任意一點(diǎn)(除B、C外),其他條件不變,試猜想AD與DE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展應(yīng)用:(3)當(dāng)點(diǎn)D在線段BC的延長線上,且滿足CD=BC,在圖3中補(bǔ)全圖形,直接判斷△ADE的形狀(不要求證明).
【答案】(1)AD=DE,見解析;(2)AD=DE,見解析;(3)見解析,△ADE是等邊三角形,
【解析】
(1)根據(jù)題意,通過平行線的性質(zhì)及等邊三角形的性質(zhì)證明即可得解;
(2)根據(jù)題意,通過平行線的性質(zhì)及等邊三角形的性質(zhì)證明即可得解;
(3)根據(jù)垂直平分線的性質(zhì)及等邊三角形的判定定理進(jìn)行證明即可.
(1)如下圖,數(shù)量關(guān)系:AD=DE.
證明:∵是等邊三角形
∴AB=BC,
∵DF∥AC
∴,∠BDF=∠BCA
∴
∴是等邊三角形,
∴DF=BD
∵點(diǎn)D是BC的中點(diǎn)
∴BD=CD
∴DF=CD
∵CE是等邊的外角平分線
∴
∵是等邊三角形,點(diǎn)D是BC的中點(diǎn)
∴AD⊥BC
∴
∵
∴
在與中
∴
∴AD=DE;
(2)結(jié)論:AD=DE.
證明:如下圖,過點(diǎn)D作DF∥AC,交AB于F
∵是等邊三角形
∴AB=BC,
∵DF∥AC
∴
∴
∴是等邊三角形,
∴BF=BD
∴AF=DC
∵CE是等邊的外角平分線
∴
∵∠ADC是的外角
∴
∵
∴∠FAD=∠CDE
在與中
∴
∴AD=DE;
(3)如下圖,是等邊三角形.
證明:∵
∴
∵CE平分
∴CE垂直平分AD
∴AE=DE
∵
∴是等邊三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多邊形的每一個內(nèi)角都相等,并且每個外角都等于和它相鄰的內(nèi)角的一半.
(1)求這個多邊形是幾邊形;
(2)求這個多邊形的每一個內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC.
(1)求作點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)的距離相等,且點(diǎn)P到∠BAC兩邊的距離也相等(尺規(guī)作圖,保留作圖痕跡,不寫作法).
(2)在(1)中,連接PB、PC,若∠BAC=40°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小丁在研究數(shù)學(xué)問題時遇到一個定義:對于排好順序的k個數(shù):x1,x2,…,xk,稱為數(shù)列Ak:x1,x2,…,xk,其中k為整數(shù)且k≥3.
定義V(Ak)=|x1﹣x2|+|x2﹣x3|+…+|xk﹣2﹣xk﹣1|+|xk﹣1﹣xk|.
例如,若數(shù)列A5:1,2,3,4,5,則V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.
根據(jù)以上材料,回答下列問題:
(1)已知數(shù)列A3:3,5,﹣2,求V(A3).
(2)已知數(shù)列A4:x1,x2,x3,x4,其中x1,x2,x3,x4為4個互不相等的整數(shù),且x1=3,x4=7,V(A4)=4,直接寫出滿足條件的數(shù)列A4.
(3)已知數(shù)列A5:x1,x2,x3,x4,x5中的5個數(shù)均為非負(fù)整數(shù),且x1+x2+x3+x4+x5=25,請直接寫出V(A5)的最大值和最小值及對應(yīng)的數(shù)列.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列事件發(fā)生的概率標(biāo)在圖中:
(1)從高處拋出的物體必落到地面;
(2)從裝有個紅球的袋子中任取一個,取出的球是白球;
(3)月亮繞著地球轉(zhuǎn);
(4)從裝有個紅球、個白球的口袋中任取一個球,恰好是紅球(這些球除顏色外完全相同);
(5)三名選手抽簽決定比賽順序(有三個簽,分別寫有,,),抽到寫有的簽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),動點(diǎn)從原點(diǎn)出發(fā),沿軸正半軸運(yùn)動,速度為每秒1個單位長度,以點(diǎn)為直角頂點(diǎn)在第一象限內(nèi)作等腰直角三角形.設(shè)點(diǎn)的運(yùn)動時間為秒.
(1)若軸,求的值;
(2)若,求點(diǎn)的坐標(biāo).
(3)當(dāng)時,軸上是否存在有一點(diǎn),使得以、、為頂點(diǎn)的三角形是等腰三角形,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個村莊A、B、C之間的距離分別為AB=12km,AC=5km,BC=13km,要從A修一條公路AD直達(dá)BC,已知公路的造價為26000元/km,求這條公路的最低造價是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】牛奶是最古老的天然飲料之一,被譽(yù)為“白色血液”,對人體的重要性可想而知,現(xiàn)已成為國家營養(yǎng)餐計劃備選食品之一.為推行國家營養(yǎng)餐計劃,某乳品公司向某營養(yǎng)餐中心運(yùn)輸一批牛奶,由鐵路運(yùn)輸每千克只需運(yùn)費(fèi)0.58 元;由公路運(yùn)輸,每千克需運(yùn)費(fèi)0.28元,還需其他費(fèi)用600元.請?zhí)骄窟x用哪種運(yùn)輸方式所需費(fèi)用較少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com